Anonymization of Network Traces Using Noise Addition Techniques

By Ahmed AlEroud

Assistant Professor of Computer Information Systems Yarmouk University, Jordan

Post-doctoral Fellow, Department of Information Systems, University of Maryland

Agenda

- Data Sharing and Traffic Anonymization
- The Challenge of Anonymizing Network Data
- Objectives
- Sensitive Network Attributes
- Existing Anonymization Techniques
- Noise Addition Techniques
- Experiments and Results
- Conclusions and Future work

Data Sharing: Trace Anonymization

- Why share network data?
 - Collaborative attack detection
 - > Advancement of network research
- Any problems with sharing network data?
 - Expose sensitive information
 - Packet header: IP address, service port exposure
 - Packet content: more serious
 - Sharing network trace logs may reveal the network architecture, user identity, and user information
- Solution: anonymization of trace data
 - > preserve IP prefix, and change packet content

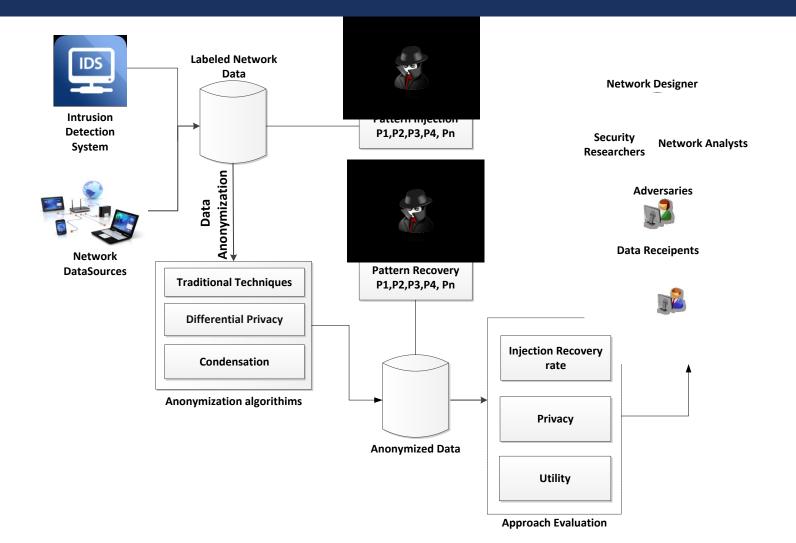
The Challenge of Anonymizing Network Data

Is it possible to create a technique that detects network threats using shared data with minimal privacy violation?

- In order to answer this question, some sub-questions need to be formulated
 - Which sensitive information is present in network protocols?
 - To what extent will anonymization techniques influence the accuracy of a threat detection system?

Sensitive Network Attributes

Field	Attacks
IP	Adversaries try to identify the mapping of IP addresses in the anonymized dataset to reveal the hosts and the network.
MAC	May be used to uniquely identify an end device. MAC addresses combined with external databases are mappable to device serial numbers and to the organizations or individuals who purchased the devices.
Time-stamps	Time-stamps may be used in trace injection attacks that uses known information about a set of trace generated or otherwise known by an attacker to recover mappings of anonymized fields.
Port Numbers	These fields partially identify the applications that generated the trace in a given trace. This information may be used in fingerprinting attacks to reveal that a certain application with suspected vulnerabilities is running on a network where the trace is collected from.
Counter Anonymization	Counters (such as packet and octet volumes per flow) are subject to fingerprinting and injection attacks.

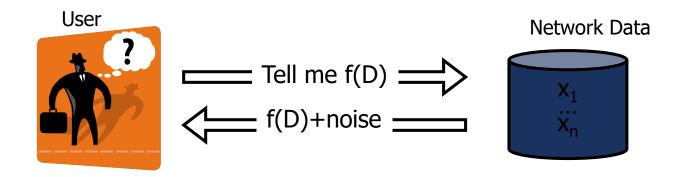

Existing Anonymization Techniques

- Blackmarking (BM)
 - > Blindly replaces all IP addresses in a trace with a single constant value
- Truncation (TR{t})
 - > Replaces the t least significant bits of an IP address with 0s
- Permutation (RP)
 - > Transforms IP addresses using a random permutation (not consistent across IP addresses)
- Pprefix-preserving permutation (PPP{p})
 - > Permutes the host and network part of IP addresses independently (consistent across IP addresses)

Objectives

- Implement anonymization model for network data, that is strong enough and provides privacy guarantee when sharing network data
- Test various attacking strategies including injection attacks on data anonymized
 - Verify that the approach is more robust guarding against different types of attacks including Fingerprinting attacks on network data

Proposed Solution and Methodology



8

Differential Privacy

- A privacy model that provides strong privacy guarantee (regardless of what attackers know)
- It works on aggregated values and prevents attackers from inferring the existence of an individual record from the aggregated values (e.g., sum of packet counts)
- The key idea is to add large enough noise (following a specific distribution called Laplace or double exponential) to hide the impact of a single network trace

One Primitive to Satisfy Differential Privacy: Add Noise to Output

- Intuition: f(D) can be released accurately when f is insensitive to individual entries x1, ... xn
- Noise generated from Laplace distribution

Differential Privacy Example

Original Data		New Data	
Packet Size	Average Packet size = 5271	Packet Size	Average Packet size = 6661
1024		1024	
1234			-
10240		1234	-
3333		10240	_
3456		3333	
12340		3456	
12340		12340	
		15000	
Differential Privacy	Average Packet size =		Average Packet size =
(add a noise to avera	age) 5271+noise		6661+noise
	= 6373		= 6175
	- 6575		= 61/5

- Without noise: If the attacker knows the average packet size before the new packet is added, it is easy to figure out the packet's size from the new average.
- > With noise: One cannot infer whether the new packet is there.

Differential-Private Anonymization

Compute mean of each column within each cluster, then add Laplace noise to the mean and replace every value with perturbed mean

6	
Packet Size	
1024	
1234	
10240	
3333	
3456	

Original Data

12340

1024 1234 10240

3333 3456

12340

Packet Size

Packet Size
1099
 1099
12221
3217
3217
12221

- The noise added follows Laplace distribution with mean zero and standard deviation = sensitivity / ε.
- Sensitivity = (max value in cluster min value in cluster) / cluster size
- The larger the cluster size, the smaller the noise
- This method works better for large volume of data

Condensation-based Anonymization of Network Data

- Implemented an algorithm with better utility-privacy tradeoff than existing methods*
- The algorithm consists of two steps:
 - Prefix-preserving clustering and permutation of IP addresses
 - Condensation based anonymization of all other attributes (to prevent injection attacks)

* Ahmed Aleroud, Zhiyuan Chen and George Karabatis. "Network Trace Anonymization Using a Prefix- Preserving Condensation-based Technique". International Symposium on Secure Virtual Infrastructures: CloudandTrustedComputing 2016

IP Anonymization Example

Original IP	Permutation	Clustering	Anonymized IP
SRC IP	SRC IP	SRC IP	SRC IP
10.50.50.12	▶210.70.70.12	210.70.70.12	210.70.70.17
10.200.21.122	210.160.71.122	210.46.46.20	210.46.46.17
10.200.21.174	210.160.71.174 -	> 210.46.70.20	210.46.70.17
10.60.60.20	210.46.46.20	210.160.71.122	210.160.71.143
10.200.21.133	210.160.71.133	210.160.71.174	210.160.71.143
10.60.50.20	210.46.70.20	210.160.71.133	210.160.71.143

Attributes Anonymized

- The features (attributes) used in network trace data that need to be anonymized and those that are important for intrusion detection are:
 - IP addresses
 - Time-stamps
 - Port Numbers
 - Trace Counters

Experimental Datasets of Network data

Experiments are conducted on

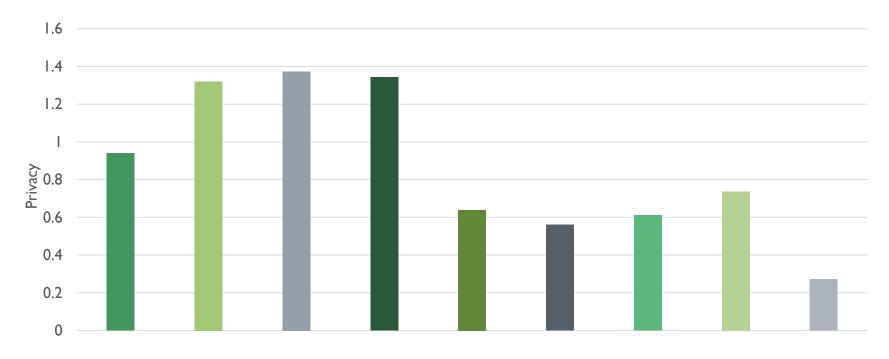
- PREDICT dataset: Protected Repository for the Defense of Infrastructure Against Cyber Threats
- University of Twente dataset: A flow-based dataset containing only attacks
- Since PREDICT mostly has normal flow and Twente mostly has attack flows, we draw a random sample from each and combine them
- The combined data sets:
 - Dataset I: 70% PREDICT dataset + 30% Twente dataset
 - Dataset 2: 50% PREDICT dataset + 50% Twente dataset
- Metrics:
 - Utility: ROC curve, TP, FP, Precision, Recall, F-measure
 - Average privacy: 2^{h(A|B)} where A is original data, B is anonymized, h is conditional entropy (higher is better)

Dataset I Experiment: KNN Classification on Anonymized Data

Dataset I (70%-30%)

419,666 Total # records

Training set:


- I77,028 Normal records
- II6,738 Attack records
- 293,766 Total records

Test set:

- 75,862 Normal records
- 50,038 Attack records
- I 25,900 Total records

	TP Rate	FP Rate	Р	R	F-Measure	ROC Area	Class
	0.98	0.013	0.981	0.98	0.98	0.984	Attack
Original	0.987	0.02	0.987	0.987	0.987	0.984	Normal
	0.984	0.017	0.984	0.984	0.984	0.984	Avg
Condensation-Per	0.941	0.059	0.961	0.941	0.951	0.941	Attack
class_Prefix_Preserving_IP	0.941	0.059	0.913	0.941	0.927	0.941	Normal
class_rielix_rieselvilig_ir	0.941	0.059	0.942	0.941	0.941	0.941	Avg
Condensation-all	0.628	0.582	0.62	0.628	0.624	0.523	Attack
classes_Prefix_Preserving_IP	0.418	0.372	0.426	0.418	0.422	0.523	Normal
classes_rielix_rieserving_ir	0.545	0.498	0.543	0.545	0.544	0.523	Avg
Differential Privacy-Per	0.941	0.059	0.96	0.941	0.95	0.94	Attack
class_Prefix_Preserving_IP	0.941	0.059	0.913	0.941	0.927	0.94	Normal
class_rielix_rieselvilig_ir	0.941	0.059	0.941	0.941	0.941	0.94	Avg
	0.691	0.612	0.631	0.691	0.66	0.54	Attack
Pure condensation	0.388	0.309	0.454	0.388	0.418	0.54	Normal
	0.571	0.491	0.56	0.571	0.564	0.54	Avg
prefix-preserving(IP)+	1	1	0.602	1	0.752	0.5	Attack
Generalization(other feature)	0	0	0	0	0	0.5	Normal
Generalization(other reature)	0.602	0.602	0.362	0.602	0.452	0.5	Avg
	0.999	1	0.602	0.999	0.751	0.5	Attack
Permutation	0	0.001	0.048	0	0	0.5	Normal
	0.602	0.602	0.381	0.602	0.452	0.5	Avg
	1	1	0.602	1	0.752	0.5	Attack
Black Marker	0	0	0	0	0	0.5	Normal
	0.602	0.602	0.362	0.602	0.452	0.5	Avg
	0.983	0.999	0.598	0.983	0.744	0.196	Attack
Truncation	0.001	0.017	0.034	0.001	0.002	0.196	Normal
	0.592	0.608	0.374	0.592	0.448	0.196	Avg
	0.082	0.163	0.432	0.082	0.137	0.46	Attack
Reverse Truncation	0.837	0.918	0.376	0.837	0.519	0.46	Normal
	0.382	0.463	0.41	0.382	0.289	0.46	Avg

Dataset | Privacy Results

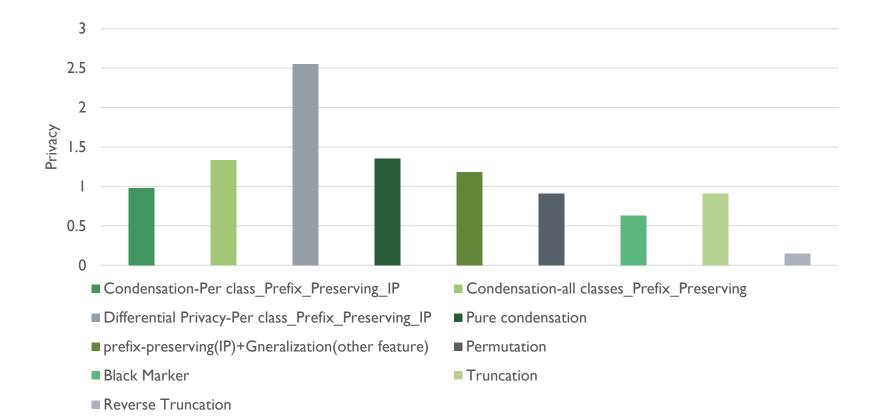
Condensation-Per class_Prefix_Preserving_IP
Differential Privacy-Per class_Prefix_Preserving_IP
prefix-preserving(IP)+Gneralization(other feature)
Black Marker

- Condensation-all classes_Prefix_Preserving
- Pure condensation
- Permutation
- Truncation

Dataset 2 Experiment: KNN Classification on Anonymized Data

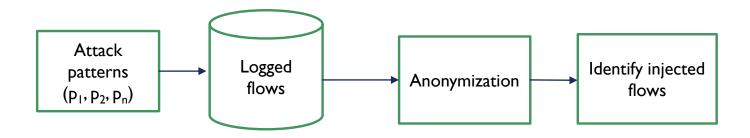
Dataset 2 (50%-50%) 278,067 Total # of records

Training set:


- 81,386 Normal records
- II3,260 Attack records
- I 94,646 Total records

Test set:

- 35,153 Normal records
- 48,268 Attack records
- 83,421 Total records


	TP Rate	FP Rate	Р	R	F-Measure	ROC Area	Class
	0.991	0.013	0.991	0.991	0.991	0.989	Attack
Original	0.987	0.009	0.987	0.987	0.987	0.989	Normal
	0.989	0.011	0.989	0.989	0.989	0.989	Avg
Condensation-Per	0.954	0.118	0.917	0.954	0.935	0.918	Attack
class Prefix Preserving IP	0.882	0.046	0.934	0.882	0.907	0.918	Normal
class_rienx_rieserving_ir	0.924	0.088	0.924	0.924	0.923	0.918	Avg
Condensation-all	0.553	0.562	0.575	0.553	0.564	0.495	Attack
classes Prefix Preserving IP	0.438	0.447	0.416	0.438	0.427	0.495	Normal
classes_Frenx_Freserving_IF	0.504	0.514	0.508	0.504	0.506	0.495	Avg
Differential Privacy-Per	0.975	0.125	0.915	0.975	0.944	0.945	Attack
class Prefix Preserving IP	0.875	0.025	0.962	0.875	0.916	0.945	Normal
class_Frenx_Freserving_IF	0.933	0.083	0.935	0.933	0.932	0.945	Avg
	0.662	0.597	0.603	0.662	0.631	0.532	Attack
Pure condensation	0.403	0.338	0.464	0.403	0.431	0.532	Normal
	0.553	0.488	0.545	0.553	0.547	0.532	Avg
prefix-preserving(IP)+	1	1	0.579	1	0.733	0.67	Attack
Generalization(other feature)	0	0	0	0	0	0.67	Normal
Generalization(other leature)	0.579	0.579	0.335	0.579	0.424	0.67	Avg
	0.083	0.31	0.27	0.083	0.127	0.387	Attack
Permutation	0.69	0.917	0.354	0.69	0.468	0.387	Normal
	0.339	0.566	0.305	0.339	0.271	0.387	Avg
	0	0	0	0	0	0.5	Attack
Black Marker	1	1	0.421	1	0.593	0.5	Normal
	0.421	0.421	0.178	0.421	0.25	0.5	Avg
	0	0	0.25	0	0	0.25	Attack
Truncation	1	1	0.421	1	0.593	0.25	Normal
	0.421	0.422	0.322	0.421	0.25	0.25	Avg
	0.906	0.9	0.58	0.906	0.708	0.503	Attack
Reverse Truncation	0.1	0.094	0.437	0.1	0.163	0.503	Normal
	0.567	0.56	0.52	0.567	0.478	0.503	Avg

Dataset 2 Privacy Results

Anonymization under Injection Attacks

- Test injection attacks on data anonymized by our algorithms
 - Are the datasets anonymized with differential privacy robust enough against Injection Attacks?
- Flows with specific and unique characteristics are prepared by possible intruders and injected in traces before anonymization
- Can one identify injected patterns from anonymized data?

Injected Patterns *

	Packet s	Source port	Destination port	Duration	Octets
PI	I	Fixed	80	-	160
P_2	5	R(65k)	R(65k)	200	256
P ₃	110	Fixed	80	200	480[+32]
P_4	10	R(65k)	R(65k)	200	832[+32]
P ₅	50	R(65k)	R(65k)	150+R(300)	I 208[+R(8)]

- Values in square brackets denote the field evolution between flows.

- R(x): random number between I and x.

- Total number of injected flows is 650 (130 flows from each pattern)

* Martin Burkhart, Dominik Schatzmann, Brian Trammell, Elisa Boschi, and Bernhard Plattner. 2010. The role of network trace anonymization under attack. SIGCOMM Comput. Commun. Rev. 40, 1 (January 2010), 5-11.

Anonymization Policies

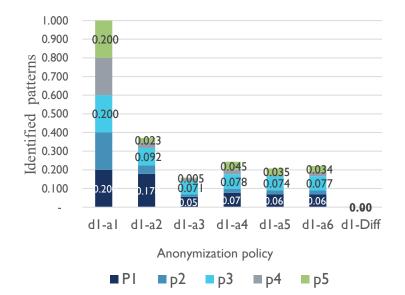
	IP Addr.	Ports	Time [S]	Packets	Octets
A	Permutation	-	-	-	-
A ₂	Permutation	-	-	O(5)	O(50)
A ₃	Permutation	B(8)	O(30)	-	-
A ₄	Permutation	B(2)	O(60)	-	-
A ₅	Permutation	B(8)	O(30)	O(5)	O(50)
A6: Condensation	-	-	-	-	-
Differential Privacy	-	-	-	-	-

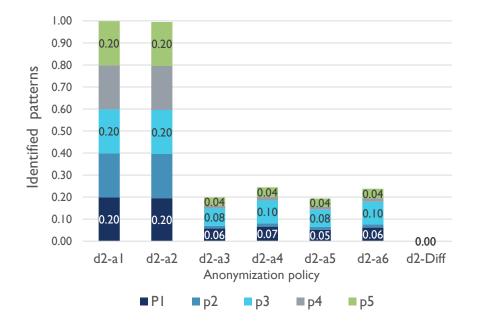
- B(x): bucketized in x buckets,

- O(x): Added a uniform random offset between -x and +x,

Successful Injection Attack Example (oops!)

		Injection Pattern		2	Packets	So	urce port	Dest	ination	port	Duration	Oc	tets		
	Injected reco	•	attern	P	2 5	R(e	55k)	R(65	<)		200	256			3
							START_MSE		END	MSE		Т	CP_FLAG DS	T_POR DU	RATIO
ID	SRC_IP	DST_IP	PACKETS C	OCTETS	START_TIME		C ENI	D_TIME	С	SRC_	PORT DST_PC	ORT S	Т	Ν	TYPE
	92144172.16.50.201	10.220.223.10	5	25	6 1.39	9835E+12	940	1.3983	5E+12	940	36717	61768	0	1	200 I
1	55653 192.168.51.68	172.16.90.3	5	25	6 1.39	835E+12	665	1.3983	5E+12	659	3245	35037	0	I	200 I
2	42622 10.60.60.20	10.150.200.200	5	25	6 1.39	835E+12	44	1.3983	5E+12	59	36290	31465	0	1	200 I
	Anonymizatior	mothod A										-			
	Anonymization	Internod								Injeo	cted Patte	rns dis	scovere		1
		IP Add	Ir. Po	orts	Time [5] Pa	ackets C	Octets		, usin	g K-NN s	oarch			15130
					-	_				usin	g IZ-ININ S	earch		2	75070
	A ₂	Perm.	-		-	0	(5) C	D(50)	M	1				з	190667
									- ~					4	220870
			PACKET		—	START EN	-	END_M			P_FLAG			5	41106
ID	SRC_IP	DST_IP	S O	CTETS	-	MSEC TI		SEC SR	_	ST_PORT S	DST_PC	DRT DURA	TION TYPE	6	92144
	155648 116.251.19.176	98.162.247.69	616	45	40345	0	40345	0	4530	80	2	1	0 1	7	155653 242622
	155649 108.239.60.192	83.39.140.125	4	83	1222259989	507	1222259989	507	113	59346	20	I	0 2	8	242022
	155650 113.69.150.12	7.6.81.7	4	67	1222262255	227	1222262255	227	113	58085	20	1	0 2	10	273329
	155651 240.54.249.20	65.78.151.232	2	89	1.39835E+12	699	1.39835E+12	699	56876	6666	0	I	0 1	11	276004
	15565272.159.16.47	17.130.149.225	6	49	1222260518	262	1222260518	262	113	42461	20	I	02	12	253237
	155653 206.36.9.209	44.200.197.229	8	260	1.39835E+12	665	1.39835E+12	659	3245	35037	0	<u> </u>	200 I	13	203653
	155654 59.100.174.176	86.185.155.99	6	79	1.39835E+12	562	1.39835E+12	562	56878	2007	0	I	0 1	14	20768
	155655 225.101.113.49	165.132.147.120	4	75	1222260753	724	1222260753	724	64221	113	2	1	0 2	15	236750
	155656 30.190.69.221	119.82.22.111	4	103	1.39835E+12	878	1.39835E+12	878	53816	3828	0	1	0 1	16	237633
	155657 12.160.24.12	29.107.15.54	3069	57	40345	0	40345	0	53152	80	2	I	0 1	17	3267
	155658 148.67.0.23	43.48.244.67	14	2021	1222187543	237	1222187543	647	22	1454	27	I	0 2	18	77141
	155659 244.144.214.23	9 49.129.28.253	I	56	1222260095	941	1222260095	941	113	51192	20	1	0 2	19	32392
	155660 191.147.42.21	210.28.99.211	5	91	1.39835E+12	675	1.39835E+12	675	58035	1058	0	1	0 1	20	194177
	155661 28.215.221.239	221.17.46.73	5	280	1.39835E+12	356	1.39835E+12	356	49545	8080	0	3	0 1	21	255112
	155662 41.183.63.15	112.34.162.148	4	139	1.39835E+12	916	1.39835E+12	916	1497	80	0	1	0 I	22	240982


Failed Injection Attack Example (YES!)


Injection Pattern																	
	2	\searrow	P	ackets	Source	port C	estinati	on port	Dur	ation	Octets						
Iniect	ed reco	ord	P ₂ 5		R(65k)	R	(65k)		200		256						
	7											- (-					
		Y					START_		END	_MS						TYP	
ID SR	C_IP	DST_IP		PACKETS OC	TETS START	TIME	MSEC	END_TIME	EC	SRC_P	ORT DST_F	PORT TO	CP_FLAGS D	ST_PORT	DURATION	E	
9214417	2.16.50.201	10.220.	223.10	5	256	1.39835E	+12 94	0 1.3983	5E+12	940	36717	61768	0		I 200) I	1
<mark> 155653 9</mark>	2.168.51.68	8 172.16.	90.3	5	256	1.39835E	<mark>⊦12</mark> 66.	5 <mark>1.3983</mark>	5E+12	659	3245	35037	0		l 200		276016
24262210	.60.60.20	10.150.	200.200	5	256	1.39835E	+l2 4·	4 1.3983	5E+12	59	36290	31465	0		I 200		270833
																3	268886
				• .•	·	• • • •	1 D ·				No Inject					4	262293
		<i>P</i>	nony	mizatior	n using D	ifferenti	al Priva	су			discovere	ed using	K-NN		<u> </u>	5	270747
											search					6	263262
ID	SRC_IP	DST_IP	PACKET		START_TIME	-	_	_	_	_	_	_		TYPE		7	266447
	1.92E+02								-4.86E+03			-2.98E+00				8	259187
	2.46E+02					4.75E+0			-3.64E+04				-6.61E+02			9	266129
)2 9.06E+00			2 3.58E+11		7.60E+03				4.28E+02			10	264681
	1.92E+02			02 1.02E+05 02 2.51E+0		4.77E+0	2 6.70E+11 2 -2.99E+11		-1.11E+04 -3.88E+04		1.04E+00 3.75E+01		-6.39E+03 -2.98E+02		`	11	259738
	2.46E+02					3.28E+0							-2.98E+02		n -	12	276016
	1.02E+01) -7.21E+04					3.45E+04				-3.11E+03			13	267364
)2 7.58E+0(2 -3.02E+11				3.20E+01	-6.12E-01				14	26196
) -2.34E+04		4.27E+0							-7.77E+03			15	269328
155657)2 -8.68E+03					3.81E+04			1.06E-01				16	261915
155658	1.76E+02	2.46E+02	2.98E+	02 I.73E+0	-1.07E+11		2 -1.07E+11	4.76E+02	-2.37E+04	4.66E+04	3.24E+01	-1.41E-01	-2.29E+02	2.00E+00	0	17	277229
155659	2.46E+02	2.45E+02	2.10E+)2 I.97E+0	4.22E+10	4.99E+0	2 4.22E+10	4.10E+02	-3.21E+04	2.71E+04	2.80E+01		-1.98E+02			18	262534
155660	1.02E+01	1.05E+01	5.45E+	3.88E+04	4 I.37E+I2	5.14E+0	2 1.37E+12	4.77E+02	3.79E+04	2.02E+04	3.98E-02	3.48E+00	9.18E+03	1.00E+00	0	19	270489
155661	1.08E+01	1.01E+01	2.31E+	02 I.33E+05	5 8.33E+11	2.37E+0	2 8.33E+11	4.89E+02	3.01E+04	-4.17E+03	8.08E-01	3.13E+00	I.06E+04	1.00E+00	0	20	271405
155662	1.02E+01	1.72E+02	4.10E+	-4.58E+04	4 2.02E+12	1.07E+0	3 2.02E+12	I.04E+03	4.20E+04	4.10E+03	-8.95E-01	3.23E+00	2.42E+03	1.00E+00	0	21	271947

Experiments on Pattern Injection

- I 30 records from each pattern are injected in each dataset before anonymization (total 650 injection attempts)
- The data is anonymized using 7 anonymization policies including Differential Privacy
- K-NN search is used to recover the injected patterns
- The number of identified injected patterns using each anonymization policy is reported

Robustness Against Data Injection Attacks

Findings

- We proposed a method to anonymize network traces that:
 - 1. Utilizes Differential Privacy providing a very strong privacy guarantee
 - 2. Is robust against injection attacks
 - 3. Has negligible impact (less than 2%) when anonymized data are fed to intrusion detection systems
 - 4. Achieves better privacy-utility tradeoff than existing techniques

Future Work

- Testing if the utility of the proposed method is affected when the number of the injected patterns increases
- Creating a GUI interface to automatically perform all anonymization procedures
- Big-data environment
 - Conduct experiments in big-data test-bed
 - Exploit parallelism for big-data
 - Investigate scalability of proposed techniques in big-data platforms
- Explore additional domains within cybersecurity (e.g. logs)

References

- I. A. Aleroud, G. Karabatis, Queryable Semantics for the Detection of Cyber Attacks
- 2. A. Aleroud, G. Karabatis, P. Sharma, and P. He, "Context and Semantics for Detection of Cyber Attacks," *Int. J. Information and Computer Security.*, vol. 6, no. 1, pp. 63-92, 2014.
- 3. A. AlEroud and G. Karabatis, "Context Infusion in Semantic Link Networks to Detect Cyber-attacks: A Flowbased Detection Approach," in *Eighth IEEE International Conference on Semantic Computing*, Newport Beach, California, USA, 2014.
- 4. A. AlEroud and G. Karabatis, "A Contextual Anomaly Detection Approach to Discover Zero-day Attacks," in ASE International Conference on Cyber Security, Washington, D.C., USA 2012, pp. 383-388.
- 5. A. AlEroud and G. Karabatis, "Detecting Zero-day Attacks using Contextual Relations," in *Ninth International Knowledge Management in Organizations Conference*, Santiago, Chile, 2014
- 6. A. AlEroud and G. Karabatis, "Toward Zero-Day Attack Identification Using Linear Data Transformation Techniques," in *IEEE 7th International Conference on Software Security and Reliability (SERE'13)*, Washington, D.C., 2013, pp. 159-168.