IPv6 CGAs: Balancing between Security, Privacy and Usability

Ahmad Alsadeh
Birzeit university
Outline

• IPv6 Configuration
• IPv6 StateLess Address Auto-Configuration
 – Extended Unique ID (EUI-64)
 – Privacy Extension RFC 4941
 – Cryptographically Generated Addresses (CGA)
• Problem statement
• Our Proposed Approach (Modified CGA)
 – CGA Modifications
 – Implementation
 – Limitations and Deployment Considerations
• SEND Implementations
• Conclusion
IPv6 Configuration

IPv6 Address (128 bits)

<table>
<thead>
<tr>
<th>Subnet Prefix</th>
<th>Interface ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bits</td>
<td>64 bits</td>
</tr>
</tbody>
</table>

Network ID can be configured
- Manual
- Stateful
- Stateless: prefix can be
 - Link-Local prefix (FE80::/64)
 - Global prefix (2001:DB8:123::/64)

Interface ID can be configured
- Manually
- Stateful (DHCPv6)
- Stateless
 - Auto-configuration Based on the MAC address (EUI-64-based interface ID)
 - Privacy Extension (Pseudo Random ID)
 - Cryptographically Generated Addresses (CGA)

Our focus on IPv6 Stateless Address Auto-Configuration (SLAAC)
1. Extended Unique ID (EUI-64)

Ethernet MAC Address (48 bits)

64 bit version

Uniqueness of the MAC

EUI-64 Address

IPv6 address

Prefix EUI-64

EUI-64: Security Implication

– Duplicate Address Detection (DAD) DoS attack

 – dos-new-ip6

Does anyone use this address

Yes, I have this address

New Host

Attacker

IPv6 CGAs: Balancing between Security, Privacy and Usability || Ahmad Alsadeh || MENOG 17: 19-20 April, Muscat
EUI-64: Privacy Implication

MAC addresses are usually the least of a user's security concern - most people happily accept browser cookies without thinking.
2. Privacy Extension - RFC 4941

It solves the privacy issue but not the security issue

3. Cryptographically Generated Addresses (CGA): Basic idea

Sender

Hash (K_{pub}, Parameters)

Signature

Subnet Prefix Interface Identifier

ND Message

Out going packet

Receiver

1. Verify CGA

2. Verify Signature
CGA Solves the Security and Privacy

• Security
 – CGA bound the address with corresponding public key. Therefore, no address spoofing – prevent the spoofing attack

• Privacy
 – The Interface ID a hash value (random) -- protect the tracking possibility

• But at what cost the security and privacy have been achieved?
 – Let us see CGA in more details
CGA: Generation algorithm

RFC 3972

1. Set CGA initial values
2. Concatenate (modifier, 0, 0, Kpub)
3. Execute SHA-1 algorithm
4. Compare the 16xSec = 0 ?
5. Concatenate (CGA parameters)
6. Execute SHA-1 algorithm
7. Form an interface ID
8. Concatenate (Prefix, Interface ID)
9. Check the uniqueness of IPv6 address

• Generate/ Obtain an RSA key pair
• Pick a random Modifier
• Select a Sec value
• Set Collision Count to 0
CGA – Computation Cost Concerns

- **Sec (0 to 7)**, unsigned 3-bit integer, is scale factor
 - The address generator needs on average $O(2^{16\times\text{Sec}})$
 - high Sec value may cause unacceptable delay

- It is likely that once a host generates an acceptable CGA, it will continue to use this address → hosts using CGAs still being susceptible to privacy related attacks.

Increase artificially the cost of a brute-force attack

<table>
<thead>
<tr>
<th>CPU 2.6 GHz</th>
<th>Sec</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>~ 1 Sec</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>~ 3 hours</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>~ 12 years</td>
</tr>
</tbody>
</table>
Problem statement

Security and privacy implication

Security implication

Privacy implication due to the computational cost

Our Approach

IPv6 CGAs: Balancing between Security, Privacy and Usability

Ahmad Alsadeh

MENOG 17: 19-20 April, Muscat
Our proposed approach (Modified CGA)

- Two main modifications to CGA
 1. Setting a CGA Address lifetime
 2. Reducing the granularity of CGA security levels

and

3. Automatic key pair generation
1. Setting a Lifetime for Temporary CGA

– A CGA address has an associated lifetime that indicates how long the address is bound to an interface

– Once the lifetime expires, the CGA address is deprecated
 • The deprecated address should not be used for new connections

– A new temporary CGA address should be generated:
 • When a host joins a new subnet
 • Before the lifetime for the in-use CGA address has expired
 • When the subnet prefix lifetime has expired
 • When the user needs to override the default value
2. Reducing the Granularity of CGA Security Levels

– The granularity factor 16 is relatively large
 • Sec value 0 or 1 can be used in practice

<table>
<thead>
<tr>
<th>Sec</th>
<th>Granularity</th>
<th>16</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>427 ms</td>
<td>121 ms</td>
<td>117 ms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5923857 ms</td>
<td>425 ms</td>
<td>128 ms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>88217 ms</td>
<td>135 ms</td>
<td></td>
</tr>
</tbody>
</table>

– We choose the granularity factor 8 for the following reasons:
 • It is unnecessary to select a high Sec when using a short lifetime
 • Computation costs of CGA is usually much more important for mobile devices which have limited resources (e.g., CPU, battery, ...)
 • The multiplication factor of 8 increases the maximum length of the Hash Extension up to 56 bits which is sufficient (59-115 bits total hash length)
3. Automatic Key Pair Generation

– Setting the keys automatically is better for the following reasons:

• Protects the user's privacy
• The keys are not vulnerable to theft
• Easier for end user
• The key generation is small portion of the total CGA generation time
Secure neighbor discovery (SEND)

SEND has three ingredients

1. CGA-based signatures
 - Prevents NA spoofing
 - Prevents address squatting in DAD
 - Zero-configuration security!

2. Certificate-based authorization of routers
 - Certificate authorizes router for a an address prefix
 - Extension to X.509 to certify IPv6 address allocation [RFC 3779]
 - Requires hosts to know the root key; currently no global CA hierarchy

3. Freshness:
 - Timestamp in unsolicited advertisement and redirect
 - Nonce in NS and RS, copied to NA and RA
Modified-CGA Implementation

• We modified the CGA part of our SEND implementation (*WinSEND*) to include the proposed modifications
 – lifetime, granularity, and the automatic key generation

• The user can override the default parameters
 – Sec value
 – Granularly: 8*sec
 – Max IP validation: 24 hours
 – Key generation
SEND Implementations

• **WinSEND**
• **NDprotector**, Telecom SudParis
• **Cisco IOS 12.4(24)T** and newer
• **Easy-SEND**
• Docomo USL SEND fork
• ipv6-send-cga, Huawei and Beijing University of Posts and Telecommunications
• Native SeND kernel API
• TrustRouter
• USL SEND (discontinued), NTT DoCoMo
Limitations and Deployment Considerations

• Changing the CGA granularity to 8 requires updating the CGA RFC
• The other modifications do not affect the CGA algorithm and the way of communicating
• There are some implications and deployment considerations for the use of changeable addresses
 – May cause unexpected difficulties with some applications
 – May have performance implication that might impact user experience
 – Protecting the users’ privacy may conflict with the administrative needs
 – Deleting the deprecated addresses requires awareness of the upper layers applications
Conclusion

• CGA can be used to prove the ownership of an IPv6 address, but it might be susceptible to privacy related attacks

• The privacy extensions protect the users' privacy but are of no value to related address spoofing attacks

• We integrate the privacy extensions into CGA to resolve both privacy and security issues for IPv6 addresses in a practical way
Thank you