Management of Inter-domain Quality of Service

Authors : S. Bakkali, H. Benaboud, M. Ben Mamoun Presented by : Sara Bakkali

Faculty of Sciences of Rabat Mohammed V-University, Rabat, Morocco.

menog16, Istanbul.

24 March 2016

- General Context
- 2 Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- OoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

- General Context
- 2 Management of QoS in IP networks
- The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- OoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

- General Context
- 2 Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- 5 QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

- General Context
- 2 Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- 5 QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

- General Context
- 2 Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- **5** QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

- General Context
- 2 Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- 4 Study of the QoS-CMS performance
- **5** QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

General Context

IP Networks Evolution

- Applications diversity (Multimedia, Visioconference, Peer-to-peer sharing).
- Burst of traffic volume (Huge number of mobile terminals, Massive use of social networks).

Obiecti⁻

• Ensure end to end QoS in an IP network across multiple domains

General Context

IP Networks Evolution

- Applications diversity (Multimedia, Visioconference, Peer-to-peer sharing).
- Burst of traffic volume (Huge number of mobile terminals, Massive use of social networks).

Objectif

• Ensure end to end QoS in an IP network across multiple domains

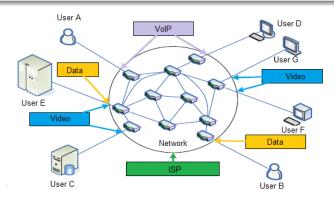
General Context

IP Networks Evolution

- Applications diversity (Multimedia, Visioconference, Peer-to-peer sharing).
- Burst of traffic volume (Huge number of mobile terminals, Massive use of social networks).

Objectif

• Ensure end to end QoS in an IP network across multiple domains


- General Context
- 2 Management of QoS in IP networks
- The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- Study of the QoS-CMS performance
- OoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

QoS Definition

QoS is the capability of a network to provide better service to selected network traffic, and it's described by parameters such as bandwidth, packet delay, jitter and packet loss rate

QoS Definition

QoS is the capability of a network to provide better service to selected network traffic, and it's described by parameters such as bandwidth, packet delay, jitter and packet loss rate

- IntServ
 - In 1994 (RFC 1633)
 - flow control and resource reservation
- DiffServ
 - In 1997 (RFC 2475)
 - Flows Aggregation in CoS, DSCP (DiffServ Code Point)
- MPLS-TE
 - In 1999 (RFC 2702)
 - Traffic Engineering
- MPLS-DiffServ
 - In 2002 (RFC 3270)
 - Support of DiffServ Cos

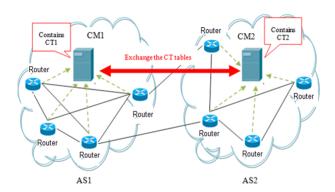
- IntServ
 - In 1994 (RFC 1633)
 - flow control and resource reservation
- DiffServ
 - In 1997 (RFC 2475)
 - Flows Aggregation in CoS, DSCP (DiffServ Code Point)
- MPLS-TE
 - In 1999 (RFC 2702)
 - Traffic Engineering
- MPLS-DiffServ
 - In 2002 (RFC 3270)
 - Support of DiffServ CoS

- IntServ
 - In 1994 (RFC 1633)
 - flow control and resource reservation
- DiffServ
 - In 1997 (RFC 2475)
 - Flows Aggregation in CoS, DSCP (DiffServ Code Point)
- MPLS-TE
 - In 1999 (RFC 2702)
 - Traffic Engineering
- MPLS-DiffServ
 - In 2002 (RFC 3270)
 - Support of DiffServ CoS

- IntServ
 - In 1994 (RFC 1633)
 - flow control and resource reservation
- DiffServ
 - In 1997 (RFC 2475)
 - Flows Aggregation in CoS, DSCP (DiffServ Code Point)
- MPLS-TE
 - In 1999 (RFC 2702)
 - Traffic Engineering
- MPLS-DiffServ
 - In 2002 (RFC 3270)
 - Support of DiffServ CoS

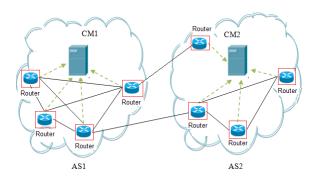
- The QoS constraints defined in the SLA (Service Level Agreement) are assigned to the CoS.
- CoS are specific and valid only within the initial domain.

These models do not guarantee end to end inter-domain QoS

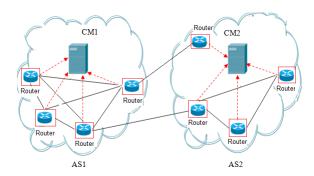

- The QoS constraints defined in the SLA (Service Level Agreement) are assigned to the CoS.
- CoS are specific and valid only within the initial domain.

These models do not guarantee end to end inter-domain QoS

- General Context
- Management of QoS in IP networks
- 3 The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- Study of the QoS-CMS performance
- G QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives


- Ensure QoS in inter-domain environment.
- Implement in each domain a server named server CM (Class Manager) to exchange all QoS information.

- Ensure QoS in inter-domain environment.
- Implement in each domain a server named server CM (Class Manager) to exchange all QoS information.


Step 0

Intra-domain classification

Step 1

Routers send all information about the different classes they had created to the CM servers of their domains.

Step 2

CM servers establish the class tables CT.

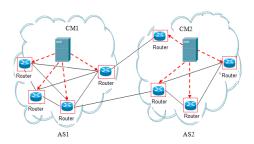
AS Number	Class Number	Bandwith	Priority	Queue- limit	Random- detect

Step 3

CM servers exchange their CT tables.

• Identification Message : IP address , AS number.

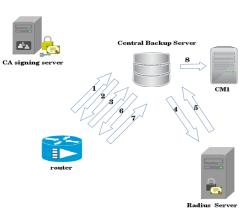
message start indicator (1 oct)	message length (2octets)	message type (1octet)
	AS number (4 octets)	


Announcement Messages : The CoS parameters.

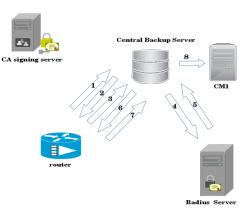
message start indicator (1 oct)	message (2oct	message type (1 octet)	
class number (1oct)	Bandwidth (1 oct)	Priority (1 oct)	Queue-limit (1 oct)
Random- detect (1 oct)			1

Update Message : adding or modifying a CoS.

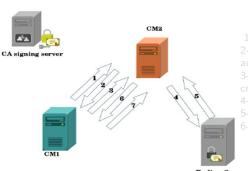
Step 4


Neighbour CM sends received CT to its router.

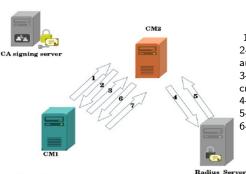
Step 5


- Routers take into account the new CoS to define.
- The packet of neighboring domain is allocated to a CoS which has the same parameters as its initial CoS.

• The Communication Between Routers and CM Server


- 1- The router seeks to connect to the Backup Server(CB)
- 2- SSL/TLS handshake is performed to authenticate both ends.
- 3- A secure channel is established and the credential is sent towards the backup server
- 4- AAA flow begins using the credential in ste 3.
- 5- Authentication successfu
- 6- and 7- The transfer begins

The Communication Between Routers and CM Server


- The router seeks to connect to the Backup Server(CB)
- 2- SSL/TLS handshake is performed to authenticate both ends.
- 3- A secure channel is established and the credential is sent towards the backup server.
- 4- AAA flow begins using the credential in step 3.
- 5- Authentication successful.
- 6- and 7- The transfer begins.

• The Exchange between Neighboring CM Servers

- 1-CM1 seeks to connect to CM2.
- 2- SSL Handshakes is performed to authenticate both ends.
- 3- A secure channel is established, and the credentials are sent towards CM2.
- 4- Transfer AAA flow begin
- 5- An authorization is sent towards CM2
 - 5- et 7-and The transfer begins

• The Exchange between Neighboring CM Servers

- 1-CM1 seeks to connect to CM2.
- 2- SSL Handshakes is performed to authenticate both ends.
- 3- A secure channel is established, and the credentials are sent towards CM2.
- 4- Transfer AAA flow begins
- 5- An authorization is sent towards CM2.
- 6- et 7-and The transfer begins.

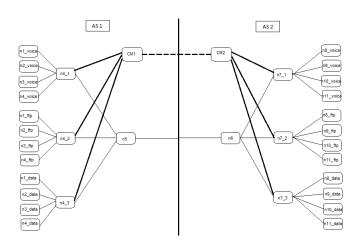
Advantages

- Continuity of QoS.
- Reduced hardware cost
- Secured Mechanism
- Reduced Overhead

Advantages

- Continuity of QoS.
- Reduced hardware cost.
- Secured Mechanism
- Reduced Overhead

The QoS-CMS Mechanism

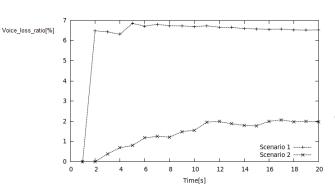

Advantages

- Continuity of QoS.
- Reduced hardware cost.
- Secured Mechanism.
- Reduced Overhead

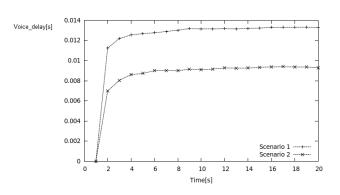
The QoS-CMS Mechanism

Advantages

- Continuity of QoS.
- Reduced hardware cost.
- Secured Mechanism.
- Reduced Overhead.


 $3\ \mathsf{CoS}$: Gold for voice, Silver for ftp and Bronze for data.

General Context
Management of QoS in IP networks
The QoS-CMS Mechanism
Study of the QoS-CMS performance
QoS-CMS in BGP Protocol
Conclusion and Perspectives


- -Measure and compare the variations of the loss ratio and the delay between the two scenarios.
- Variate the QoS parameters (CIR: Committed Information Rate)
- Measure the improvement ratio in each case and for each type of traffic

General Context
Management of QoS in IP networks
The QoS-CMS Mechanism
Study of the QoS-CMS performance
QoS-CMS in BGP Protocol
Conclusion and Perspectives

- -Measure and compare the variations of the loss ratio and the delay between the two scenarios.
- Variate the QoS parameters (CIR: Committed Information Rate).
- Measure the improvement ratio in each case and for each type of traffic.

Reduced loss ratio in scenario 2 after implementation of QoS-CMS.

Reduced Delay in scenario 2 after implementation of QoS-CMS..

- General Context
- Management of QoS in IP networks
- The QoS-CMS Mechanism
 - Architecture and Operation
 - Security
 - Advantages
- Study of the QoS-CMS performance
- **5** QoS-CMS in BGP Protocol
- 6 Conclusion and Perspectives

QoS-CMS in BGP Protocol

- Introduce an extension of CMS-QoS mechanism to be integrated into the BGP protocol.
- Promote the choice of a path through an AS with which we establish a QoS-CMS agreement.
- Automatically while taking routing decision that this path will be saved in the routing table.

QoS-CMS in BGP Protocol

- Introduce an extension of CMS-QoS mechanism to be integrated into the BGP protocol.
- Promote the choice of a path through an AS with which we establish a QoS-CMS agreement.
- Automatically while taking routing decision that this path will be saved in the routing table.

QoS-CMS in BGP Protocol

- Introduce an extension of CMS-QoS mechanism to be integrated into the BGP protocol.
- Promote the choice of a path through an AS with which we establish a QoS-CMS agreement.
- Automatically while taking routing decision that this path will be saved in the routing table.

Definition of new attribut « QoS-agrmt »

- Indicates if at least one AS from those contained in the "AS-Path" attribute establishes the inter-AS QoS agreement with the current AS.
- The size of the "QoS-agent" is one bit:
 1- it is 0, if no agreement is established
 2- it is 1, if an agreement is established

Definition of new attribut « QoS-agrmt »

- Indicates if at least one AS from those contained in the "AS-Path" attribute establishes the inter-AS QoS agreement with the current AS.
- The size of the "QoS-agent" is one bit:
 1- it is 0, if no agreement is established
 2- it is 1, if an agreement is established

Definition of new attribut « QoS-agrmt »

- Indicates if at least one AS from those contained in the "AS-Path" attribute establishes the inter-AS QoS agreement with the current AS.
- The size of the "QoS-agent" is one bit:
 1- it is 0, if no agreement is established
 2- it is 1, if an agreement is established

- Attribute "QoS-agrmt" is syntactically incorrect = the notification message error sub-code "Invalid QoS-agrmt attribute".
- The "Data" field of the notification message: type, length and value of the invalid attribute.
- New sub-code that indicates "Invalid QoS-agrmt Attribute" in the error sub-codes of the message update (No. 12)

- Attribute "QoS-agrmt" is syntactically incorrect = the notification message error sub-code "Invalid QoS-agrmt attribute".
- The "Data" field of the notification message: type, length and value of the invalid attribute.
- New sub-code that indicates "Invalid QoS-agrmt Attribute" in the error sub-codes of the message update (No. 12)

- Attribute "QoS-agrmt" is syntactically incorrect = the notification message error sub-code "Invalid QoS-agrmt attribute".
- The "Data" field of the notification message: type, length and value of the invalid attribute.
- New sub-code that indicates "Invalid QoS-agrmt Attribute" in the error sub-codes of the message update (No. 12)

- Attribute "QoS-agrmt" is syntactically incorrect = the notification message error sub-code "Invalid QoS-agrmt attribute".
- The "Data" field of the notification message: type, length and value of the invalid attribute.
- New sub-code that indicates "Invalid QoS-agrmt Attribute" in the error sub-codes of the message update (No. 12)

Modifiying the "breaking tie" algorithm

- include a new step in the algorithm (3rd criteria).
- Eliminate routes that have "QoS-agrmt" equal to 0 = prefer routes that cross a domain with which we have a QoS agreement to routes that are not.

General Context
Management of QoS in IP networks
The QoS-CMS Mechanism
Study of the QoS-CMS in BGP Protocol
QoS-CMS in BGP Protocol
Conclusion and Perspectives

Conclusion

- Proposition of QoS-CMS mechanism to ensure the QoS offered to the inter-domain traffic.
 - Flexibility and simplicity
 - Coherence and extensibility.
- The performance studies results showed the interest and significant improvement ensured by QoS-CMS.

- Implementation and study of the impact of "QoS-agrmt" attribute on BGP.
- Develop a module for management of QoS in multi-controller SDN architecture.

Conclusion

- Proposition of QoS-CMS mechanism to ensure the QoS offered to the inter-domain traffic.
 - Flexibility and simplicity.
 - Coherence and extensibility.
- The performance studies results showed the interest and significant improvement ensured by QoS-CMS.

- Implementation and study of the impact of "QoS-agrmt" attribute on BGP.
- Develop a module for management of QoS in multi-controller SDN architecture

Conclusion

- Proposition of QoS-CMS mechanism to ensure the QoS offered to the inter-domain traffic.
 - Flexibility and simplicity.
 - Coherence and extensibility.
- The performance studies results showed the interest and significant improvement ensured by QoS-CMS.

- Implementation and study of the impact of "QoS-agrmt" attribute on BGP.
- Develop a module for management of QoS in multi-controller SDN architecture

Conclusion

- Proposition of QoS-CMS mechanism to ensure the QoS offered to the inter-domain traffic.
 - Flexibility and simplicity.
 - Coherence and extensibility.
- The performance studies results showed the interest and significant improvement ensured by QoS-CMS.

- Implementation and study of the impact of "QoS-agrmt" attribute on BGP.
- Develop a module for management of QoS in multi-controller SDN architecture