BGP and Traffic Engineering with Akamai

Christian Kaufmann
Akamai Technologies
MENOG 14
The Akamai Intelligent Platform

The world’s largest on-demand, distributed computing platform delivers all forms of web content and applications

The Akamai Intelligent Platform:

147,000+ Servers | 2,000+ Locations | 1,200+ Networks | 700+ Cities | 92 Countries

Typical daily traffic:
- More than 2 trillion requests served
- Delivering over 21 Terabits/second
- 15-30% of all daily web traffic
How CDNs Work

When content is requested from CDNs, the user is directed to the optimal server
- This is usually done through the DNS, especially for non-network CDNs, e.g. Akamai
- It can be done through anycasting for network owned CDNs

Users who query DNS-based CDNs be returned different A (and AAAA) records for the same hostname

This is called “mapping”

The better the mapping, the better the CDN
How Akamai CDN Work

Example of Akamai mapping

• Notice the different A records for different locations:

[NYC]% host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 207.40.194.46
e5211.b.akamaiedge.net. A 207.40.194.49

[Boston]% host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 81.23.243.152
e5211.b.akamaiedge.net. A 81.23.243.145
Why Akamai Peer with ISPs

Performance & Redundancy
• Removing intermediate AS hops seems to give higher peak traffic for same demand profile

Burstability
• During large events, having direct connectivity to multiple networks allows for higher burstability than a single connection to a transit provider

Peering reduces costs

Network Intelligence

Backup for on-net servers
• If there are servers on-net, the peering can act as a backup during downtime and overflow
• Allows serving different content types
Why ISPs peer with Akamai

Performance
• Akamai and ISPs are in the same business, just on different sides
 - we both want to serve end users as quickly and reliably as possible

Cost Reduction
• Transit savings
• Possible backbone savings

Marketing
• Claim performance benefits over competitors
• Keep customers from seeing “important” web sites through their second uplink

Because you are nice :-(
How Akamai use IXes

Akamai usually do not announce large blocks of address space because no one location has a large number of servers
• It is not uncommon to see a single /24 from Akamai at an IX

This does not mean you will not see a lot of traffic
• How many web servers does it take to fill a gigabit these days?
How Akamai use IXes

- Akamai (Non-network CDNs) do not have a backbone, so each IX instance is independent
- Akamai uses transit to pull content into the servers
- Content is then served to peers over the IX
- After BGP is established, you might not see traffic until 24hrs
- Akamai Mapping System needs time to process new prefix
Why don’t I get all the Akamai content via the Peering?

- No single cluster can accommodate all Akamai content
- Peer with Akamai in different locations for accessing different Akamai Content
- ISP prefers Customer before Peers
- Akamai prefers on-net Cluster before Peer
- Do you want to host Akamai Cluster?
After Peering With Akamai….

DO and DON’T’s of Traffic Engineering
The world uses...
AS Path Prepending

• **Before**
 Akamai Router#sh ip b 100.100.100.100
 BGP routing table entry for 100.100.100.0/20, version Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001

• **After**
 Akamai Router#sh ip b 100.100.100.100
 BGP routing table entry for 100.100.100.0/20, version Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001 1001 1001 1001
But it does not have the usual effect
The world uses...
MED

• Before
Akamai Router#sh ip b 100.100.100.100
BGP routing table entry for 100.100.100.0/20, version Paths: (1 available, best #1, table Default-IP-Routing-Table)
Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001
 Origin IGP, metric 0, localpref 100, valid, external, best

• After
Akamai Router#sh ip b 100.100.100.100
BGP routing table entry for 100.100.100.0/20, version Paths: (1 available, best #1, table Default-IP-Routing-Table)
Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001
 Origin IGP, metric 1000, localpref 100, valid, external, best
But it does not have the usual effect
The world uses...
More Specific Route

• **Before**
 Akamai Router#sh ip b 100.100.100.100
 BGP routing table entry for 100.100.96.0/20, version
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001

• **After**
 Akamai Router#sh ip b 100.100.100.100
 BGP routing table entry for 100.100.100.0/24, version Paths: (1 available, best #1, table
 Default-IP-Routing-Table)
 Multipath: eBGP
 Advertised to update-groups:
 2 7
 4635 1001
But it does not have the usual effect
Why doesn’t it has the usual effect?

- Akamai uses Mapping, on top of the BGP routing
- Akamai Mapping is different from BGP routing
- Akamai uses multiple criteria to choose the optimal server
- These include standard network metrics:
 - Latency
 - Throughput
 - Packet loss
Typical Scenarios in Traffic Engineering
Scenario: In-consistent Route Announcement
Consistent Route Announcement of Multi-Home ISP A

- ISP A is multi-home to Transit Provider AS2002 and AS3003
- Transit Provider AS2002 peer with Akamai
- Transit Provider AS3003 do not peer with Akamai
- Akamai always sends traffic to ISP A via Transit Provider AS2002
What will you do?

- ISP A would like to balance the traffic between two upstream providers

- ISP A prepend, MED to Transit Provider AS2002. Unfortunately, no effect on Akamai traffic.....

- Eventually, ISP A breaks the /20 and starts more specific & inconsistent route announcement

- What will happen?
ISP A Load Balance the Traffic Successfully

- ISP A announces more specific routes /24 to Transit Provider AS3003
- Transit Provider AS3003 announces new /24 to AS2002
- Akamai peer router do not have full routes like many other ISP, so traffic continue route to the superblock /20 of AS2002
- ISP A is happy with the balanced traffic on dual Transit Providers
What is the problem?

• Loss of revenue for Transit Provider AS2002 although their backbone is consumed

• What could happen if AS2002 does not like the peer-to-peer traffic?
AS2002 Filter Traffic on Peer Port

- In order to get rid of peer-to-peer traffic, Transit Provider AS2002 implement an ACL on IX port facing AS3003
- ISP A cannot access some websites due to traffic black hole

```
hostname AS2002-R1
!
interface TenGigabitEthernet1/1
ip access-group 101 out
!
access-list 101 deny ip any 100.100.100.0 0.0.0.255
access-list 101 deny ip any 100.100.99.0 0.0.0.255
access-list 101 permit ip any any
```
Is Traffic Filtering a good workaround?

- It is observed that some Transit Providers filter peer-to-peer traffic on IX port or Private Peer

- If you promised to carry the traffic of a block (e.g./20), you should not have any holes (e.g. /24) or drop any part of the traffic

- The end users connectivity will be impacted by your ACL!!!
Your Promise

Send to Hong Kong please

Courier to Asia
You break the promise!

Hong Kong
Akamai workaround on ISP Traffic Filtering

- Akamai observes ISP A user unable to access some websites
- Akamai blocks all prefix received from Transit Provider AS2002, so traffic shifts from IX to Transit AS4003
- ISP A can access all websites happily
- Transit Provider AS2002 observes traffic drop on IX
What is the result?

- ISP A results in imbalance traffic between two upstream providers
- We wish consistent route announcement
- Transit Provider AS2002 lost all Akamai traffic from peer because he breaks the promise of carrying the packet to destination
- Transit Provider AS2002 lost revenue due to the reduction of traffic
- ISP should filter the specific routes rather than filter the traffic
Ideal solution

- Transit Provider AS2002 should filter the specific route rather than traffic
- ISP A can work with upstreams and Akamai together
- Transit Provider AS3003 can peer with Akamai
- ISP A can announces consistent /24 in both upstream
- ISP A can prepend the /24 for traffic tuning

```
neighbor PEER-GROUP prefix-list DENY-SPECIFIC in !
ip prefix-list DENY-SPECIFIC seq 5 deny 100.100.100.0/24
ip prefix-list DENY-SPECIFIC seq 10 deny 100.100.99.0/24
ip prefix-list DENY-SPECIFIC seq 100 permit 0.0.0.0/0 le 32
```
Scenario: In-complete Route Announcement
In-complete Route Announcement

- ISP A is multi-home to Transit Provider AS2002 and AS3003
- Transit Provider AS2002 peers with Akamai
- Transit Provider AS3003 does not peer with Akamai
- ISP A announces different prefix to different ISP
- ISP A can access full internet
How will the traffic route to ISP A end users?
- End Users are using IP Address of 100.100.96.0/22, 100.100.100.0/22, 100.100.104.0/22, 100.100.108.0/22
- End Users are using ISP A DNS Server 100.100.100.100
- Akamai receives the DNS Prefix 100.100.100.0/22 from AS2002, so it maps the traffic of ISP A to this cluster
- 100.100.96.0/22 100.100.100.0/22 traffic is routed to AS2002 while 100.100.104.0/22 100.100.108.0/22 traffic is routed to AS3003 by default route
Does it cause problem?

- It is observed that some ISP performs in-complete route announcement (Eg. Announce different sub-set of prefix to different upstream)
- Some 100.100.100.108.0/22 end users have different performance than the others
- What will ISP A do if the user complains?
ISP A change the prefix announcement

- ISP A perceives AS3003 performance is lower than AS2002
- ISP A adjust the route announcement
- Both 100.100.96.0/22 and 100.100.108.0/22 are routed by AS2002 and end users have the same download speed
- ISP A end users are happy to close the complaint ticket
After 24 hours

Akamai’s Mapping System processes the change of prefix......
ISP A End Users complaints again

- Akamai no longer receive DNS prefix 100.100.100.0/22 from AS2002
- Akamai maps the traffic of ISP A to Cluster B instead of Cluster A
- ISP A still receives the traffic from both upstream
- ISP A End Users complain again 😞
Before Akamai Mapping System refresh
• Akamai maps the traffic to Cluster A
After Akamai Mapping System refresh

- Akamai maps the traffic to Cluster B
Our Recommendation

• Please maintain complete route announcement
• Talk to us if there are any traffic or performance issues
• We can work together for traffic engineering
Ideal solution

- ISP A should announce complete prefix in both upstream.
- ISP A can work with upstream and Akamai together.
- Transit Provider AS3003 can peer with Akamai.

```
       Transit Provider
                AS4003
         +------------------+
         |                  |
         | 0.0.0.0/0         |
         |                  |
         +------------------+

     Akamai
    AS20940

       IX
       +------------------+
       | 100.100.96.0/20 |
       | 100.100.96.0/20 |
       | 100.100.96.0/20 |
       | 100.100.96.0/20 |
       | 100.100.96.0/20 |
       | 100.100.104.0/22|
       | 100.100.100.0/22|
       +------------------+

     Transit Provider
                AS3003

     Transit Provider
                AS2002

     Transit Provider
                AS1003

       ISP A
      AS1001

       +------------------+
       | 100.100.100.0/20|
       | 100.100.100.0/20|
       | 100.100.100.0/20|
       | 100.100.100.0/20|
       | 100.100.100.0/20|
       | 100.100.108.0/22|
       | 100.100.108.0/22|
       +------------------+
```
Scenario: Improper Prefix Announcement after customer left
Single Home ISP A

- ISP A is single home to Transit Provider AS2002
- ISP A obtains a /24 from Transit Provider AS2002
- Akamai always sends traffic to ISP A via Transit Provider AS2002

```
Akamai AS20940 Routing Table
100.100.96.0/20   AS2002
100.100.97.0/24   AS2002 AS1001
0.0.0.0/0         AS4003
```
Single Home ISP A changed upstream provider

- ISP A keeps using 100.100.97.0/24 from Transit Provider AS2002
- ISP A is changed upstream from AS2002 to AS3003
- Akamai always sends traffic to ISP A via Transit Provider AS2002 because the superblock /20 is received

Akamai AS20940 Routing Table
- 100.100.96.0/20 AS2002
- 0.0.0.0/0 AS4003

Akamai
AS20940

Transit Provider
AS2002

IX

Transit Provider
AS3003

ISP A
AS1001

Transit Provider
AS4003

0.0.0.0/0
What is the problem?

- Lost of revenue for Transit Provider AS2002 although their backbone is consumed and customer left

- What could happen if AS2002 does not like the peer-to-peer traffic?
Transit Provider AS2002 Filter Traffic on Peer Link

- In order to get rid of peer-to-peer traffic, Transit Provider AS2002 implement an ACL on IX port facing AS3003
- ISP A cannot access some websites due to traffic black hole

```
Akamai AS20940 Routing Table
100.100.96.0/20   AS2002
0.0.0.0/0        AS4003

hostname AS2002-R1
  interface TenGigabitEthernet1/1
    ip access-group 101 out
  access-list 101 deny ip any 100.100.97.0 0.0.0.255
  access-list 101 permit ip any any
```
Akamai workaround on ISP Traffic Filtering

- Akamai observes ISP A users unable to access some websites
- Akamai blocks all prefixes received from Transit Provider AS2002, so traffic shift from IX to Transit AS4003
- ISP A can access all websites happily
- Transit Provider AS2002 observes traffic drop on IX

Akamai AS20940 Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>ASN</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.100.96.0/20</td>
<td>AS2002</td>
</tr>
<tr>
<td>0.0.0.0/0</td>
<td>AS4003</td>
</tr>
</tbody>
</table>

Transit Provider AS2002

hostname AS2002-R1

interface TenGigabitEthernet1/1
ip access-group 101 out

access-list 101 deny ip any 100.100.97.0 0.0.0.255
access-list 101 permit ip any any
Is Traffic Filtering a good workaround?

• It is observed that some Transit Providers filter peer-to-peer traffic on IX port or Private Peer

• If you promised to carry the traffic of a block (eg./20), you should not have any holes (eg. /24) or drop any part of the traffic

• If you assign an IP block (eg. /24) to a customer permanently (eg. Assign Portable), you should not announce the superbloc (eg. /20) after customer left

• The end users connectivity will be impacted by your ACL!!!
Ideal Solution

- AS2002 can break the superblock (/20) into sub-blocks
- AS2002 should not announce ISP A prefix
Summary

• **Akamai Intelligent Platform**
 • Highly distributed edge servers
 • Akamai mapping is different from BGP routing

• **Peering with Akamai**
 • Improve user experience
 • Reduce transit/peering cost

• **DO and DONTS of Traffic Engineering**
 • Typical Traffic Optimization Techniques has no usual effect
 • Maintain consistent route announcement if possible
 • Maintain complete route announcement is a must
 • Do not filter traffic by ACL
Questions?

Christian Kaufmann <ck@akamai.com>

More information:
Peering: http://as20940.peeringdb.com
Akamai 60sec: http://www.akamai.com/60seconds