Collecting NetFlow with pmacct

Paolo Lucente

oMmacct

MENOG 13 meeting, Kuwait City — Sep 2013

o O O O O

Collecting NetFlow with pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

MENOG 13 meeting, Kuwait City — Sep 2013

whoami: Paolo

Been originally working for operators for a while
Been working for vendors for a little while after that

Been involved with IP accounting for a while
* Hence | stumbled upon NetFlow in the 90’s ©
Within operators, network traffic telemetry is
beneficial in several contexts, ie.:

* Traffic engineering

* Capacity planning

* Peering

* and also (ie. not only) security

pmacct is open-source, free, GPL’ed software

libpcap
-\ MongoDB
NetFlow BerkeleyDB

IPFIX — pmacct

sFlow - \).
RabbitMQ %
memory
tables

http://www.pmacct.net/

MySQL
PgSQL
SQLite

BGP
IGP
maps

Usage scenarios

ISPs, Hotspots, Data-center

Monitor customer quotas or fair-usage policy

Peering
I ' IP Carriers, CDNs

IXPs
Infer member relations Detect revenue leaks
Provide members traffic Customer retention
stats Peering
Mobile operators SDN
Verify roaming charges Query of traffic stats on

Inspect subscribers behaviour custom spatial and

temporal bounds

Key pmacct non-technical facts

10 years old project
ree, open-source, independent
Under active development

nnovation being introduced
Well deployed around, also large SPs

Aims to be the traffic accounting tool closer to
the SP community needs

o O O O O

Collecting NetFlow with pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

MENOG 13 meeting, Kuwait City — Sep 2013

Some technical facts (1/3)

= Pluggable architecture

e Straightforward to add support for new collection
methods or backends

" An abstraction layer allows out-of-the-box any
collection method to interact with any backend
" Both multi-process and (coarse) multi-threading

* Multiple plugins (of same or different type) can be
instantiated at runtime, each with own config

Some technical facts (2/3)

BGP thread ﬁ MySQL plugin

é@straction
layer

Core Proce

NetFlow thread Print IO|U_gin
(to flat-files)

Observed

Backends
network

Some technical facts (3/3)

" Pervasive data-reduction techniques, ie.:

* Data aggregation
e Tagging and filtering
 Sampling
= Ability to build multiple views out of the very same
collected network traffic dataset, ie.:
* Unaggregated to flat-files for security and forensic

purposes

* Aggregated as [<ingress router>, <ingress interface>,
<BGP next-hop>, <peer destination ASN> | to build an
internal traffic matrix for capacity planning purposes

Touching ground: a config snippet for both
aggregated and unaggregated views

nfacctd_ip: 10.0.0.1 Basic daemon
nfacctd port: 2100 config

plugins: print[forensics], mysgl[int traffic matrix]
|

aggregate[forensics]: src host, dst host, Instantiating

peer src ip, peer dst ip, in iface, out iface, \ plugins
timestamp start, timestamp end, src port, \

dst port, proto, tos, src mask, dst mask, src as, \

dst as, tcpflags Defining plugin
! aggregation

e —

aggregate[int traffic matrix]: in iface, peer src ip, \ methods

peer dst 1p, peer dst as
!

! <rest of config skipped>

Touching ground: data aggregation &
custom-defined primitives

= Config file snippet:
o

aggregate[int traffic matrix]: peer src ip, \
mplsTopLabelIPv4Address Node-to-node internal TM

! (egress NetFlow)
aggregate primitives: /path/to/primitives.lst

mplsTopLabellPv4Address
« ey .« ey not supported natively, let's
= Custom primitive definition: et

name=mplsTopLabelIPv4Address field type=47 len=4 semantics=ip

Data presentation: [u_int,
hex, ip, mac, str]

Primitive name, NetFlow field type,
will be used for IPFIX Information Element NetFlow/IPFIX
everything field length

Introducing BGP natively into a
NetFlow/sFlow collector

" pmacct introduced a Quagga-based BGP daemon
* Implemented as a parallel thread within the collector
* Doesn’ t send UPDATEs and WITHDRAWS whatsoever
* Behaves as a passive BGP neighbor
* Maintains per-peer BGP RIBs
e Supports 32-bit ASNs; IPv4 and IPv6 families

* Why BGP at the collector?
* Telemetry reports on forwarding-plane

* Telemetry should not move control-plane
information over and over

IGP (IS-IS) integration

" A Quagga-based IS-IS daemon was introduced:
* Implemented as a parallel thread within the collector
* |S-IS neighborship over a GRE tunnel

* Currently limited to single neighborhip, single level,
single topology

e Useful to look up non BGP-routed networks
* Promising, many plans:
" Implement a non real-time, IGP-protocol agnostic version

" Introduce IGP-specific primitives (ie. IGP distance)
" Collecting feedback on interest around TRILL

Storing data persistently

" Data need to be aggregated both in spatial and
temporal dimensions before being written down:

* Optimal usage of system resources
* Avoids expensive consolidation of micro-flows
e Suitable for project-driven data-sets

" Open-source RDBMS appear a natural choice
* Able to handle large data-sets
* Flexible and standardized query language

* Solid and scalable (clustering, partitioning)

" noSQL DBs picking up: between myth and bust ..

Storing data persisently: MongoDB

" pmacct opening to noSQL databases

" noSQL landscape difficult to move through, ie.
fragmented and lacks of standardization

" MongoDB seemed interesting for:

* |ts native grouping operation (more performing and
less complex than map/reduce)

* Its horizontal scaling concept (called sharding)
" Picking up among operators and being constantly

improved (ie. batching inserts, native support for
indexing) for the past 9 months!

Brokering data around:
RabbitMQ message exchanges

pmacct opening to AMQP protocol

noSQL landscape difficult to move through, ie.
fragmented and lacks of standardization, am i
repeating myself? ©

Data can be picked up at the message exchange
in the preferred programming/scripting language

Data can be then easily inserted in the preferred
backend, ie. not natively supported by pmacct

o O O O O

Collecting NetFlow with pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

MENOG 13 meeting, Kuwait City — Sep 2013

Why speaking of traffic matrices?

= So, after all, are traffic matrices useful to a
network operator in the first place? Yes ...

e Capacity planning (build capacity where needed)

* Traffic Engineering (steer traffic where capacity is
available)

* Better understand traffic patterns (what to expect,
without a crystal ball)

e Support peering decisions (traffic insight, traffic
engineering at the border, support what if scenarios)

Review of traffic matrices: internal

= POP to POP, ARto AR, CRto CR

Review of traffic matrices: external

= Router (AR or CR) to external AS or external AS to
external AS (for IP transit providers)
Y W ¥ VW O
| o

- i - > o> -
T = »‘“\ 14 :

“k

Server Farm 1 Server Farm 2

Let’s focus on an external traffic matrix to
support peering decisions

" Analysis of existing peers and interconnects:
* Support policy and routing changes
* Fine-grained accounting of traffic volumes and ratios

 Determine backbone costs associated to peering
 Determine revenue leaks

" Planning of new peers and interconnects:
* Who to peer next

* Where to place next interconnect
* Modeling and forecasting

Our traffic matrix visualized

6'/* QI,
tos)
~
4D . : :
A = {src_as, in_iface, peer_src_ip, peer_dst_ip, as_path, tstamp, bytes }
)(J == {CZ, X (->CY), PEC, PE A, AZ_AY, <time>, <bytes> }

=== {BX, Y (->BY), PE B, PE C, CY_CX, <time>, <bytes> }
{AX, Z (-> AZ), PE A, PE B, BY_BZ, <time>, <bytes> }

Getting BGP to the collector (1/2)

" | et the collector BGP peer with all PE devices:
facing peers, transit and customers.

= Determine memory footprint (below in MB/peer)

60 500K IPv4 routes, 50K IPv6 routes, 64-bit executable
50
50 -—-l— L L L L L L |

44.03

~ 9GB total memory @ 500 peers

a =0=—MB/peer >= 0.12.4

1859 18.12 17.89 | 17.76 17.57 17.48 17.39 ' MB/peer<0.12.4

19.97

20
——; —— L ¢
10
0
0 200 400 600 800 1000 1200 1400

Number of BGP peers

Getting BGP to the collector (2/2)

= Set the collector as iBGP peer at the PE devices:
e Configure it as a RR client for best results
* Collector acts as iBGP peer across (sub-)ASes

" BGP next-hop has to represent the remote edge
of the network model:

* Typical scenario for MPLS networks

* Can be followed up to cover specific scenarios like:

* BGP confederations
e Optionally polish the AS-Path up from sub-ASNs

= default gateway defined due to partial or default-only
routing tables

Getting telemetry to the collector

" Export ingress-only measurements at all PE
devices: facing peers, transit and customers.

e Traffic is routed to destination, so plenty of
information on where it is going to

* Itis crucial instead to get as much as possible about
where traffic is coming from

" |Leverage data reduction techniques at the PE:
* Sampling

e Aggregation (but be sure to carry IP prefixes!)

Telemetry data/BGP correlation

peer_src_ip
peer_dst _ ip

peer
dst as

o Edge routers send full BGP tables to pmacct
e Traffic flows

o NetFlow records are sent to pmacct
o pmacct looks up BGP information: NF src addr == BGP src addr

Touching ground: a config snippet for
traffic matrices

pluglns mysqgl [int tm], mysqgl[ext tm] POﬂtOpOﬂHﬂeﬂm|TM

aggregate[int tm]: 1n iface, peer src ip,

'peer—dSt—lp’ peer_dst_as AS-to-AS external TM

aggregate[ext tm]: src as, in iface, peer src 1p,
peer dst 1p, peer dst as, as path, dst as
|

sql tablel[int tm]: int tm-3Y3m%d
| Dynamic SQL table names,

le.: XXX_tm-20130803_1400

sgl tablelext tm]: ext tm-%Y%m%d

sqgl cache entries[ext tm]: 99991
|

sql refresh time: Insert data every 5 mins
sql history: 5m ._ .)
| Build time bins of 5 mins

! <rest of config skipped>

Touching ground: how data would look
like: internal traffic matrix example (1/2)

mysgl> SHOW TABLES FROM pmacct;

| Set of internal traffic
| matrices

int_tm-20130803_1410 | Set of external traffic

..

| int tm-20130803 1400

|

I

| .. | matrices
I

|

I

|

int tm-20130803 1405

ext tm-20130803 1400 |
ext tm-20130803 1405
ext tm-20130803 1410 |

NOTE: sub-aggregation is expensive: we could also have had our traffic matrices over multiple

temporal aggregations in parallel, ie. 5 mins (as above) but also hourly and daily.

Touching ground: how data would look
like: internal traffic matrix example (2/2)

mysgl> SELECT * FROM int tm-20130803 1400 LIMIT 10;

to———————— fom - fom - Fom - Fom Fo————— +
| iface in | peer ip src | peer 1p dst | peer dst as | stamp inserted | bytes |
to— fom - Fom Fom Fom Fo————— +
212	10.0.0.107	10.0.0.3	65000	03-08-2013 14:00	859
212	10.0.0.107	10.0.0.253	65001	03-08-2013 14:00	5358
212	10.0.0.107	10.0.0.234	65002	03-08-2013 14:00	6181
212	10.0.0.107	10.0.0.251	65003	03-08-2013 14:00	27002
205	10.0.0.107	10.0.0.233	65004	03-08-2013 14:00	1200
258	10.0.0.107	10.0.0.240	65005	03-08-2013 14:00	560
212	10.0.0.107	10.0.0.252	65006	03-08-2013 14:00	62682
212	10.0.0.107	10.0.0.234	65007	03-08-2013 14:00	3843
212	10.0.0.107	10.0.0.17	65008	03-08-2013 14:00	21074
205	10.0.0.107	10.0.0.254	65009	03-08-2013 14:00	2023
Fom e TN Ryt W e +

10 rows

Here is our matrix

Getting ingress NetFlow
from 10.0.0.7 time window 14:00 - 14:05

Time reference Amount of traffic sent in the

Case-study: peering at AS286

Peering as a cycle

NetFlow + BGP traffic matrix
steers peering optimization:

Optimization

Negotiation

Production

Identify new and “old” peers

Traffic analysis: backbone
costs, 95t percentiles, ratios

Analysis of interconnection
density and traffic dispersion

Forecasting and trending

Ad-hoc queries from Design
& Engineering and indeed ...
the IPT Product Manager

Case-study: peering at AS286

= 250+ Gbps routing-domain

AS286 routing
domain * 100+ high-end routers around

Ve
oy,

86 the globe:
 Export sampled NetFlow
e Advertise full routing table
* Mix of Juniper and Cisco

= Collector environment:
 Runs on 2 Solaris/SPARC zones
* pmacct: dual-core, 4GB RAM
 MySQL: quad-core, 24GB RAM,

500 GB disk
Internal users .
= Data retention: 6 months

Case-study: peering at AS286

= AS286 backbone routers are first configured from
templates:

e NetFlow + BGP collector IP address defined over there

* Enabler for auto-discovery of new devices

" Edge interfaces are provisioned following service
delivery manuals:

e Relevant manuals and TSDs include NetFlow activation
 Periodic checks NetFlow is active where it should

" Maps, ie. source peer-AS, are re-built periodically

o O O O O

Collecting NetFlow with pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

MENOG 13 meeting, Kuwait City — Sep 2013

pmacct, logging & flat-files: brief history
(1/2)

= Originally pmacct was about memory tables
and RDBMS (no flat-files).

" |t was also about data aggregation (no logging
micro-flows).

" This is because there were already tools doing
this — so why spending time in reinventing the
wheel?

= Much better invest time in filling the gaps and
give room to innovative ideas

pmacct, logging & flat-files: brief history
(2/2)

= Recently the landscape is changing and NetFlow
and IPFIX protocols are being generalized

" Noticeably, they are entering in the Event
Logging space, ie.:
e Cisco NEL, ie. (CG)NAT events
* Cisco NSEL, ie. security events

" This is great time to review the strategy in this
sense introducing support for both flat-files and

logging (of events and, as a consequence, of
micro-flows)

Logging use-cases

= Micro-flows:
 R&D, lab activities
e Security, DDoS detection, forensics

* Related to data aggregation:
= Analysis, temporary: elaborate aggregation methods
= Back-up, permanent: keep raw data in case useful

= Events:
* NAT events: compliancy with local authorities
* FW events: security reports

Logging feature status (1/2)

" Split data basing on time of the day:
* |le. 5 mins, hourly, daily files (fully customizable)
* Not (yet?) possible to split content basing on file size

" Can build a structure of directories basing on
time of the day and (some) primitive values (ie. IP
address of the telemetry exporter):

* To facilitate archiving (files can be also further
archived right away via triggers, print_trigger exec)

* To control files/directory ratio more fine-grained

" Can append to an existing file: ie. hourly files but
refreshed with data every 5 mins.

Logging feature status (2/2)

" Files in text-format only: tab-spaced, CSV and
JSON formats:

* no binary format (yet?)

* |deas behind it so far:
= Why constraining users to capabilities of a client tool?
= |f binary is really wanted, insert in a noSQL database

 When both compressed, the file size ratio, in CSV
format, to an equivalent file from flow-tools is 4:1
(so four times bigger). Worth direct access to data?

= Will appreciate your feedback!

Touching ground: a config snippet for
logging micro-flows

plugins: print[forensics] Micro-flow (de)aggregation
|

aggregate[forensics]: src host, dst host, \

peer src ip, peer dst ip, in iface, out iface, \

timestamp start, timestamp end, src port, \

dst port, proto, tos, src mask, dst mask, src as, \ Dynamic file names, ie.:

dst_as, tcpflags forensics-20130803_1400
!

print output file[forensics]: /path/to/forensics-%Y%m%d SH%M.txt

print output[forensics]: csv [formatted, csv,

print refresh time[forensics]: 300 BOH]

print output file append[forensics]: true
| Insert data every 5 mins,

append to file if exists

!' from pmacct 1.5.0rc2

print latest file[forensics]: /path/to/forensics-latest

| <rest of config skipped> Pointer to latest file to

become optional and
explicitly configured

Touching ground: how data would look
like: logging micro-flows (1/2)

shell> 1s —-1la

1lrwXrwxrwx

forensics-20130802-1400.txt

1

pmacct
pmacct
pmacct
pmacct
pmacct

pmacct
pmacct
pmacct
pmacct
pmacct

<size>
<size>
<size>
<size>
10 Aug

Aug 02
Aug 02
Aug 02
Aug 02

13

13:

14
14

:50
55
:00
:05

forensics-20130802-1345.
forensics-20130802-1350.
forensics-20130802-1355.
forensics-20130802-1400.

02 14:05 forensics-latest —->

Configurable ownership

Pointer to latest finalized file

txt
tTxt
txt
txt

Touching ground: how data would look
like: logging micro-flows (2/2)

shell> cat forensics-latest

SRC_AS,DST AS,PEER SRC IP,PEER DST IP,IN IFACE,OUT IFACE,SRC IP,DST IP,
SRC_MASK, DST_MASK, SRC_PORT, DST_ PORT, TCP FLAGS, PROTOCOL, TOS, TIMESTAMP ST
ART, TIMESTAMP END, PACKETS, BYTES

65001,65002,10.0.0.1,10.0.0.100,101,8,192.168.158.133,192.168.126.141,2
4,24,01912,22,24,tcp,16,2013-08-04 17:40:12.167216,2013-08-04
17:41:36.140279,21,1407

[]

Touching ground: a config snippet for
logging NAT events

plugins: print[cgn] Well-defined NAT event
!

aggregate[cgn]: src host, post nat src host, src port, \
post nat src port, proto, nat event, timestamp start

print output file[cgn]: /path/to/cgn-%Y%m%d SHIM.txt

print output[cgn]: json Bigger cache size to
print refresh time[cgn]: 300 cope with increased
print cache entries[cgn]: 9999991 number of records
print output file append[cgn]: true

! <rest of config skipped>

NOTE 1: see config snippet for micro-flows (a few slides back) for additional comments on
configuration directives listed above.

NOTE 2: a bigger cache is beneficial to limit scattering of writes to the backend. If the configured
cache is unable to contain all records, a purge of data to the backend is triggered and cache content is
flushed so to make room to new data.

Touching ground: how data would look

shell> 1s —-1la

1lrwXrwxrwx

cgn-20130802-1400.txt

like: logging NAT events (1/2)

1

pmacct
pmacct
pmacct
pmacct

pmacct

pmacct
pmacct
pmacct
pmacct

pmacct

<size>
<size>
<size>
<size>
10 Aug

Aug 02
Aug 02
Aug 02
Aug 02

13:
13:
:00
14:

14

50
55

05

cgn-20130802-1345.
cgn-20130802-1350.
cgn-20130802-1355.
cgn-20130802-1400.

02 14:05 cgn-latest ->

txt
txt
txt
txt

Touching ground: how data would look
like: logging NAT events (2/2)

shell> cat cgn-latest

{"timestamp start": "2013-02-21 16:56:33.518000000", "ip proto": "tcp",
"post nat ip src": ”1.2.179.16", "ip src": 7”192.168.37.51", "port src":
61020, "nat event": 1, "post nat port src": 31392}

[..]

A single (set of) collector(s) for both
micro-flows and events logging?

" Yes, possible:
= All NetFlow, regardless, pointed to the same place
" Makes sense on small-medium deployments

* On larger ones potentially pressuring the collector
with DDoS’s and CGN blades rebooting is not a
good idea. Go for splitting.

" pmacct able to tag and channelize data (ie.
send data selectively to plugins) basing on a
number of clauses, ie. NAT event information

element.

Touching ground: a config snippet for
both micro-flows and event logging (1/2)

plugins: print[forensics], print[cgn]
! Allowing only flows through

pre tag filter[forensics]: 10 (see next inde)
aggregate[forensics]: <micro-flows aggregation method>
print output file[forensics]: /path/to/forensics-%Y%m%d $HSM.txt

Allowing only events

pre_tag filterlcgn]: 20 through (see next slide)

aggregate[cgn]: <NAT events aggregation method>
print output file[cgn]: /path/to/cgn-%Y%m%d S$HSM.txt
print cache entries[cgn]: 9999991

|

print output: csv

print refresh time: 300 Enabler for channelizing
print output file append: true data to the correct p|ug|n

! instance: map to assign tags
pre tag map: /path/to/pretag.map to records

! <rest of config skipped>

NOTE: This configuration merely merges the micro-flows and event logging configurations seen before.

Check them out (a few slides back) for additional comments on configuration directives listed above.

Touching ground: a config snippet for
both micro-flows and event logging (2/2)

shell> cat pretag.map

set tag=10
set tag=20

ip=0.0.0.0/0
ip=0.0.0.0/0

sample type=flow

sample type=event

Apply heuristics to classify
Apply to all NetFlow/
IPFIX exporters

records among flows and
events

Tags are assigned in
pretag.map and recalled in the
configuration by pre_tag_filter

o O O O O

Collecting NetFlow with pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

MENOG 13 meeting, Kuwait City — Sep 2013

Briefly on scalability

" Asingle collector might not fit it all:
« Memory: can’t store all BGP full routing tables
 CPU: can’t cope with the pace of telemetry export

* Divide-et-impera approach is valid:
= Assign PEs (both telemetry and BGP) to collectors
= Assign collectors to databases; or cluster the database.

" A traffic matrix can get big, but can be reduced:
* Keep smaller routers out of the equation
* Filter out specific services/customers on dense routers

* Focus on relevant traffic direction (ie. upstream if CDN,
downstream if ISP)

e Sample or put thresholds on traffic relevance

Need for horizontal scalability in a
telemetry collector

= Cope with increasing data rates:

* 10G to 100G but depending on the application
sampling rates might stay the same

* Events logging: ie. NetFlow now challenges Syslog to
log Carrier Grade NAT (CGN) and firewall events

= Scale without super-computing powers
" Hashing can help coupling information, ie.

* NetFlow exporter IP address for traffic matrices
* Destination IP address for security

pmacct & horizontal scaling

" Supports a ‘tee’ plugin
* Receivers can be added/changed/removed on the fly
* Load-balenced tee’ing (hashed or round-robin)
* Selective tee’ing (based on telemetry exporter)

" Multiple pmacct instances can run in parallel

* Coupling telemetry and routing data from same PE

= Supports multiple backend plugins

e Build multiple views of the same traffic hence
creating project-oriented data-set

Touching ground: a config snippet for
transparent hashing balancer (1/2)

plugins: tee[balancer]

Instantiating a tee plugin

! In Linux: adjust /proc/sys/net/core/rmem max to cope with this wvalue
! plugin pipe size[default]: 1024000000

Buffering: to handle
sustained packet rates.
Here commented out.

! plugin pipe size[balancer]: 2048000000
' plugin buffer size[balancer]: 10240000

tee receivers[balancer]: /path/to/tee receivers.lst

tee transparent: true

File containing receivers
definitions

Transparent balancing
enabled. Disabling it acts as

Touching ground: a config snippet for
transparent hashing balancer (2/2)

shell> cat tee receivers.lst

id=1 \
ip=192.168.5.1:2100,192.168.5.2:2100,192.168.5.3:2100 \

balance—-alg=hash-agent

Touching ground: a config snippet for
transparent selective balancer (1/2)

plugins: tee[balancer]

! In Linux: adjust /proc/sys/net/core/rmem max to cope with this wvalue
! plugin pipe size[default]: 1024000000

! plugin pipe size[balancer]: 2048000000
' plugin buffer size[balancer]: 10240000

tee receivers[balancer]: /path/to/tee receivers.lst

tee transparent: true
|

pre tag map: /path/to/pretag.map

Enabler for selective

balancing: map to assign tags
to NetFlow/IPFIX exporters

NOTE: see config snippet for transparent hashing balancer (a few slides back) for additional comments

on configuration directives listed above.

Touching ground: a config snippet for
transparent selective balancer (2/2)

shell> cat tee receivers.lst

1d=2 1p=192.168.4.1:2100 tag=100
1d=3 1p=192.168.4.2:2100 tag=200

Tags are assigned in
pretag.map and recalled in

shell> cat pretag.map tee receivers.Ist

set tag=100 ip=10.0.0.0/25
set tag=200 ip=10.0.0.128/25

Further information

http://www.pmacct.net/lucente pmacct uknofl4.pdf

* More about coupling telemetry and BGP

http://ripe6l.ripe.net/presentations/156-ripe61-bcp-

planning-and-te.pdf

* More about traffic matrices, capacity planning & TE
http://wiki.pmacct.net/OfficialExamples

 Compiling instructions and quick-start guides
http://wiki.pmacct.net/ImplementationNotes

* Implementation notes (RDBMS, maintenance, etc.)

Collecting NetFlow with pmacct

Thanks for your attention!

Questions? Now or later

Paolo Lucente
pmacct

<paolo at pmacct dot net>
Keep in touch via LinkedIn

MENOG 13 meeting, Kuwait City — Sep 2013

Collecting NetFlow with pmacct

Backup slides

MENOG 13 meeting, Kuwait City — Sep 2013

Post-processing RDBMS and reporting (1/2)

" Traffic delivered to a BGP peer, per location:

mysqgl> SELECT peer as dst, peer ip dst, SUM(bytes), stamp inserted

FROM acct bgp
WHERE peer as dst = <peer | customer | IP transit> AND

stamp inserted = < today | last hour | last 5 mins >

GROUP BY peer as dst, peer 1ip dst;

" Aggregate AS PATHs to the second hop:

mysgl> SELECT SUBSTRING INDEX (as path, ‘., 2) AS as path, bytes
FROM acct bgp
WHERE local pref = < IP transit pref> AND
stamp inserted = < today | yesterday | last week >
GROUP BY SUBSTRING INDEX (as path, ‘.’, 2)
ORDER BY SUM (bytes) ;

" Focus peak hour (say, 8pm) data:

mysgl> SELECT .. FROM .. WHERE stamp inserted LIKE °‘2010-02-% 20:00:00’

Post-processing RDBMS and reporting (2/2)

» Traffic breakdown, ie. top N grouping BGP peers
of the same kind (ie. peers, customers, transit):

mysql> SELECT .. FROM .. WHERE ..

local pref = <<peer | customer | IP transit> pref>

= Download traffic matrix (or a subset of it) to 3™
party backbone planning/traffic engineering
application (ie. Cariden, Wandl, etc.):

mysqgl> SELECT peer ip src, peer 1p dst, bytes, stamp inserted
FROM acct bgp
WHERE [peer 1p src = <location A> AND
peer 1p dst = <location Z> AND ..]
stamp inserted = < today | last hour | last 5 mins >

GROUP BY peer ip src, peer 1ip dst;

