Peering, Transit and IXPs

Philip Smith
MENOG 11
Amman
30th September – 9th October 2012
Background

- Presentation discusses:
 - Transit
 - Peering
 - Internet Exchange Points

- Tracking the growth of an Internet access provider
 - Transit
 - Adding Peering
 - Participating in an IXP
Transit

- A network operator which provides access to other parts of the Internet
 - Local/Regional
 - More usually “The Whole Internet”

- Transit providers must be chosen wisely:
 - Only one = no redundancy
 - Too many:
 - No economy of scale
 - Traffic engineering is very difficult
 - Service quality very difficult to provide

- Recommendation:
 - At least two, not more than three
Common Mistakes

- Signing up with too many transit providers
 - Lots of small circuits
 - These cost more per Mbps than larger ones
 - Transit rates per Mbps reduce with increasing transit bandwidth purchased
 - Hard to implement reliable traffic engineering
 - High operational overhead fine tuning peering arrangements
 - Serious service quality concerns due to more frequent path changes and “Internet” disruptions
Common Mistakes

- No diversity for chosen transit providers
 - They are not diversely connected on local operator’s network backbone
 - All reached over same satellite or same submarine cable
 - All connect to the same upstream
 - All have poor onward transit and peering arrangements
Peer

- A peer is another autonomous system with which the local network has agreed to exchange locally sourced routes and traffic.

- Private peer
 - Private link between two providers for the purpose of interconnecting.

- Public peer
 - Internet Exchange Point, where providers meet and freely decide who they will interconnect with.

- **Recommendation:** peer as much as possible!
Peering Advice

- Analyse traffic sources and use that knowledge to determine peers
- Self-list in the Peering Database
 - www.peeringdb.com
- Participate in the various regional and Global peering fora
 - www.peeringforum.com
- Work as hard as possible to get as much peering as possible
 - No traffic costs (usually)
 - Consider transit as last resort – it costs money!
Common Mistakes

- Mistaking a transit provider’s “Exchange” business for a no-cost public peering point
- Being physically close to a public peering point but not participating
- Ignoring/avoiding competitors because they are competition
 - Even though potentially valuable peering partner to give customers a better experience
Types of Interconnect

- Private Interconnect
 - Where two network operators agree to share costs of a direct interconnection
 - Exchange their local routes/traffic
 - No traffic costs

- Public Interconnect
 - Where a network operator participates at an Internet Exchange Point, interconnecting with other network operators
 - Exchange routes/traffic with other peers
 - No traffic costs
Types of IXP peering

- Bi-lateral peering
 - Like private peering, two operators agree to interconnect their networks, but over the IXP fabric

- Multi-lateral peering
 - Operator peers with the IXP route server
 - Route server sends all routes it knows to the operator
 - Route server sends operator’s routes to all other operators peering with route server

- Most IXPs provide the opportunity for participants to use both bi-lateral and multi-lateral peering
Why an Internet Exchange Point?

Saving money, improving service quality, encouraging a local Internet economy
Internet Exchange Point

Why peer?

- Consider a region with one ISP
 - They provide internet connectivity to their customers
 - They have one or two international connections

- Internet grows, another ISP sets up in competition
 - They provide internet connectivity to their customers
 - They have one or two international connections

- How does traffic from customer of one ISP get to customer of the other ISP?
 - Via the international connections
Internet Exchange Point

Why peer?

- Yes, International Connections...
 - If satellite, RTT is around 550ms per hop
 - So local traffic takes over 1s round trip

- International bandwidth
 - Costs significantly more than domestic bandwidth
 - Congested with local traffic
 - Wastes money, harms performance
Internet Exchange Point
Why peer?

- **Solution:**
 - Two competing ISPs peer with each other

- **Result:**
 - Both save money
 - Local traffic stays local
 - Better network performance, better service quality,…
 - More international bandwidth for expensive international traffic
 - Everyone is happier
Internet Exchange Point
Why peer?

- A third ISP enters the equation
 - Becomes a significant player in the region
 - Local and international traffic goes over their international connections
- They agree to peer with the two other ISPs
 - To save money
 - To keep local traffic local
 - To improve network performance, service quality,...
Internet Exchange Point

Why peer?

- Peering means that the three ISPs have to buy circuits between each other
 - Works for three ISPs, but adding a fourth or a fifth means this does not scale

- Solution:
 - Internet Exchange Point
Internet Exchange Point

- Every participant has to buy just one whole circuit
 - From their premises to the IXP
- Rather than N-1 half circuits to connect to the N-1 other ISPs
 - 5 ISPs have to buy 4 half circuits = 2 whole circuits → already twice the cost of the IXP connection
Internet Exchange Point

Solution
- Every ISP participates in the IXP
- Cost is minimal – one local circuit covers all domestic traffic
- International circuits are used for just international traffic – and backing up domestic links in case the IXP fails

Result:
- Local traffic stays local
- Service quality considerations for local traffic is not an issue
- RTTs are typically sub 10ms
- Customers enjoy the Internet experience
- Local Internet economy grows rapidly
How to start?

- It needs three network operators to agree:
 - To interconnect their networks
 - A common neutral location for the IX
 - To share costs:
 - Infrastructure (data centre, rack, switch, power, a/c)
 - Operational (data centre, switch management)
 - Basic behavioural rules (MoU)

- And that’s really all there is to it
How to scale?

- Start up model works well for a few participants (<10)
- After that, need to consider:
 - Cost recovery model of the IXP
 - Data centre value
 - Permanent staffing arrangement
 - Ethernet switch & other network equipment
 - Scaling the peering arrangements
 - Governance: i.e. consortium/management board
Other Opportunities

- IXP is primarily about facilitating local peering
- But other entities are interested in IXPs too:
 - Content providers
 - Lower transit costs, fast delivery, better end-user experience
 - Root nameserver operators
 - Local instance of F, I, K, L, etc
 - ccTLD and gTLD operators
 - Domestic ccTLD is priority
Other Services

Other services can be provided:

- Time synchronisation (ntp)
- Route Collector
 - Marketing tool for IXP
 - Troubleshooting tool for ISPs and global Internet
- Route Server
 - Scales BGP peering at IXP

Services should avoid competing with the membership
Adding more participants?

- With an established IX:
 - Content providers connected
 - Root nameserver operator present
 - Existing participants have superior domestic internet performance

- Non-participants miss out on benefits
 - Motivated to join
 - Customer word of mouth is powerful
 - Especially when local content delivery is superior via IXP connected participants ISPs
Scaling further?

- IXP becomes “critical infrastructure” for local Internet traffic
- How to scale:
 - ISPs bring second router (for redundancy)
 - Second switch (for redundancy)
 - Second site (for redundancy)
Other issues

- Obtaining unanimity in the local industry before setting up the IX is usually impossible
 - Three network operators are all that are needed to start an IX

- Technically the IX is very simple to set up
 - Ethernet switch, one router per ISP, and eBGP

- Politically the IX could be complicated to set up
 - Participants try and gain advantage over others
 - Government or Regulator may want to operate it
 - Incumbent telco is usually last to participate
Advice on IX construction

- Establish local peering before being forced by Government to do so
- Avoid:
 - Complex rules and stifling bureaucracy
 - Complex cost models and barriers to entry
- Obtain minimum critical mass
- Get the IXP established technically (easy!)
- Lobby content providers, root nameserver operators and the local ccTLD to participate
Conclusion

- Tracked the growth of an Internet access provider
 - **Transit** gives global Internet connectivity – traffic costs
 - **Peering** – no traffic costs, reduced dependency on Transit
 - **IXP** – scalable **Peering** (no traffic costs), essential for a growing Internet economy