
CITC IPv6 Tunnel Broker

Arun Natarajan S,
Senior System Administrator
CITC Internet operations center
arun.c@citc.gov.sa
+966 56 2804268

Copyright @2012 Communications and Information Technology Commission

1
1 29 April 2012

Target audience and why

§  CITC work to promote IPv6 deployments in the Kingdom

§  Still, some providers only give IPv4 service

§  End hosts are usually IPv6 capable, but network
infrastructure is not necessarily configured (last mile)

§  CITC want to promote it as a free national service

Copyright @2012 Communications and Information Technology Commission

2
2 29 April 2012

Objectives

§  Creating an open source tunnel server that would encourage
IPv6 deployments

§  Building local knowledge and experience

§  In addition to CITC having a tunnel broker, any DSP/ISP can
deploy the tunnel broker for minimal cost using CITC IPv6
tunnel broker

§  Encourage end users and engineers to experiment with IPv6

Copyright @2012 Communications and Information Technology Commission

3
3 29 April 2012

Tunnel broker background and history
§  Developed by CITC in cooperation with NXme consultancy

services

§  Assignment: ‘Figure out how to provide IPv6 to anyone who
wants it. It must provide user authentication and be free; in
other words open source’

§  The project began in July/August 2010

§  Please see http://www.ipv6.sa/tunnelbroker/ for more
information on downloading, installation etc.

Copyright @2012 Communications and Information Technology Commission

4
4 29 April 2012

Evaluation – thinking cap

§  How does the rest of the world do it?

§  Many solutions:
• TIC, TSP, AYIYA, protocol 41, 6to4, 6over4, GRE, Teredo

§  Many potential customers also are behind NAT

§  We could not find any free server software, so we decided to
write our own

Copyright @2012 Communications and Information Technology Commission

5
5 29 April 2012

Design criteria...

§  Fast, possibly scalable (distributed)

§  User authentication required

§  Compatible, usable anywhere (well… at least in many hosts)

§  Also compatible with existing licensing in surrounding
operating system

Copyright @2012 Communications and Information Technology Commission

6
6 29 April 2012

...turn to design requirements

§  Fast and scalable:
• meet or surpass $VENDOR's advertised 50k users
• multiple tunnel servers with easy auth/mgmt

§  Authentication:
• need to define who can use the service

§  Compatible:
• NAT traversal, so protocol 41 or similar is not possible
• clients available preferably for Windows, Linux, BSD and OSX
• address potential licensing issues
• smartphones and tablets ?

Copyright @2012 Communications and Information Technology Commission

7
7 29 April 2012

Our pick: TSP

§  TSP is defined in RFC5572

§  TSP defines a tunnel broker and one or more tunnel servers,
that may or may not be in same physical host

§  TSP is a signaling protocol: it is used for authentication,
negotiation of tunnel parameters and tunneled IPv6 address
space and such

§  TSP uses XML [W3C.REC-xml-2004] basic messaging over
TCP or UDP

Copyright @2012 Communications and Information Technology Commission

8
8 29 April 2012

Our pick: TSP

§  Tunnels established by TSP are static tunnels, which are
more secure than automated tunnels [RFC3964]; no third
party relay required

§  No dependency on the underlying IPv4 address

§  Discovery of IPv4 NAT in the path

§  Both use UDP/3653, difference in first nibble (0xf)

Copyright @2012 Communications and Information Technology Commission

9
9 29 April 2012

Design decisions...

§  Use Linux

§  Do tunneled packet processing in kernel space
• want to avoid context switching
• possibly simplify things

§  Use Python for TSP server
• common, easy, had necessary bells and whistles (even SASL)

§  User database to solve mutual exclusion problem between
concurrent clients trying to acquire prefix

Copyright @2012 Communications and Information Technology Commission

10
10 29 April 2012

...turn into

§  kernel module 'utun' and TSP server 'ddtb'

§  kernel module is very simple
• decapsulation just removes the UDP/IPv4 header
• encapsulation allocates new skb, then memcpy()s headers+payload
• UDP checksum is optional, no calculation made

§  Have all dynamic configuration in the database so a web
management interface is easy to implement

§  GPLv2 licensing for kernel module, 'GPLv2 or any later' for

rest
 Copyright @2012 Communications and Information Technology Commission

11
11 29 April 2012

Questions

§  Where do I get it?
• See http://www.ipv6.sa/tunnelbroker

§  Where do I get client?
• Use any TSP client.

§  Where do I get connectivity?
• CITC provides access to anyone living in Saudi Arabia.

§  Reliability?
• No long-term testing with multiple concurrent clients has been possible

(we don't have such user mass that would generate much traffic)

Copyright @2012 Communications and Information Technology Commission

12
12 29 April 2012

Questions

§  What prerequisites are there?
• linux kernel with accept_local sysctl (>= 2.6.32)
• Python (install tested on 2.6 and 2.7)
• C compiler, make

§  How do I install it?
• make && make install
• follow instructions of make output on how to create client user accounts

and admin user accounts (included are command-line tools and web UI)

Copyright @2012 Communications and Information Technology Commission

13
13 29 April 2012

Credits

§  Developers:
• Mikko Rantanen
• Kari Mettinen

§  Contributors:
• Dr. Ibraheem Al Furaih
• Sami Al Daham
• Arun Natarajan S
• Bilal Al Sabbagh
• Pekka Korolainen
• Ilkka Tuohela
• Paul Pietkiewicz

Copyright @2012 Communications and Information Technology Commission

14
14 29 April 2012

Questions?

Thank you.

Copyright @2012 Communications and Information Technology Commission

15
15 29 April 2012

Implementation

§  Each time a client authenticates, create interface of type
'utun'

§  Add v4/v6 addresses to this interface and put it into 'UP' state

§  Add route to client's IPv6 block through this interface

§  Now we have routes and an interface for the client (traffic
from client goes to correct interface)

Copyright @2012 Communications and Information Technology Commission

16
16 29 April 2012

Implementation

§  How to identify and forward incoming packets to right
interface?

§  Mark them using '-j MARK --set-mark <nnn>' to fwmark the
packets

§  This is done in 'mangle' table PREROUTING chain

Copyright @2012 Communications and Information Technology Commission

17
17 29 April 2012

Implementation

§  For mark <nnn>, add 'ip rule' to set routing table <yyy> for
these packets

§  Add host route to client interface IP address into route table
<yyy>

§  Flush route cache

§  Result: tunneled traffic goes to correct interface (utun kernel
module instance)

Copyright @2012 Communications and Information Technology Commission

18
18 29 April 2012

Performance
§  When sending 100Mbps /dev/zero from client1 via tunnel

broker to client2 using socat, top shows:
 Cpu(s): 0.1%us, 0.1%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.0%hi, 0.6%si, 0.0%st

§  vmstat
 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 0 1379512 133232 302768 0 0 5 15 230 50 0 0 100 0
 0 0 0 1379512 133236 302768 0 0 0 54 10336 107 0 1 99 0
 0 0 0 1379512 133236 302768 0 0 0 0 10280 75 0 0 100 0
 0 0 0 1379512 133236 302768 0 0 0 0 10335 74 0 0 100 0

§  Commands used:
 client1:~# socat /dev/zero TCP6-CONNECT:[2001:67c:130:e010::2]:55666
 client2:~# socat TCP6-LISTEN:55666,bind=[2001:67c:130:e010::2] pipe:/dev/null

§  RX/TX byte counters from interface show about 10.5
mebibytes per second throughput (10.5 * 2^20 bytes per
second)

Copyright @2012 Communications and Information Technology Commission

19
19 29 April 2012

Performance

§  The python TSP server does 250 authentications per minute
when two separate hosts run simultaneously, just logging in.
CPU usage is 8%..10% for the python process doing TSP.

§  TSP server has Intel Xeon E5410 @ 2.33GHz.
§  Ping to tunnel interface (gateway) is received and replied to

in about 16-20µs (ProLiant DL360 G5, NetXtreme II BCM5708)

§  Regular IPv4 ping tends to have slightly better time of about
12-16µs (IPv4 on eth0)

§  Timing seen from tcpdump packet capture timestamps
§  Server runs Ubuntu 11.04

Copyright @2012 Communications and Information Technology Commission

20
20 29 April 2012

Problems

§  Conflicting requirements:
• tested clients expected broker and server in same IP address and UDP

port
• running a daemon doing bind() would steal all packets to userspace

§  Classifying and routing incoming packets:
• TSP signaling traffic (specific bit pattern)

 vs.
• TSP tunneled traffic
• both are from all clients to same IPv4/UDP/3653

Copyright @2012 Communications and Information Technology Commission

21
21 29 April 2012

Problem, 1.1

§  We run broker and server in the same machine..

§  ..but we can't run them on same IP address..

§  ..because TSP daemon would get the tunneled traffic
because of bind()..

§  ..before the actual tunnel interface..

§  ..and we don't want the traffic to go to user space.

Copyright @2012 Communications and Information Technology Commission

22
22 29 April 2012

Problem, 1.2

§  We must run broker and server on different IP addresses..

§  ..but tested clients needed broker and server IP to be same,
for some reason

§  Further, TSP server must bind() to real IP address in a real
interface (not our utun-interface)

Copyright @2012 Communications and Information Technology Commission

23
23 29 April 2012

Solution, 1

§  TSP server is run on IP address #1 bound to physical
interface

§  all tunnel interfaces share a different IP address #2 (no MAC
address or ARP capability on interface)

§  clients only send traffic to IP address #2: iptables is used to
distinguish TSP signaling traffic and RAWDNAT it

§  nearby router has ARP entry for shared 'virtual' tunnel
interface IP address

• (you might get away with gARPing)
§  now we have broker (TSP) and server (tunnel interface) on

two different IPs, clients can talk to broker and authenticate
etc. Copyright @2012 Communications and Information Technology Commission

24
24 29 April 2012

Solution, 2

§  We can route traffic based on client IP address and port to
different interface (policy routing based on source)

§  For each client, create interface with special name based on
client IP address and source port.

• Client IP 172.16.2.42, port 58022
• Interface name: ac10022a_58022

§  Mark all packets coming from this combination (‘fwmark’)
§  Create separate router table, point tunnel server IP to this

interface name (‘via device’)
§  Create ‘ip rule’ to ‘lookup’ for this ‘fwmark’

Copyright @2012 Communications and Information Technology Commission

25
25 29 April 2012

Problem 2

§  Encapsulated packet comes in and is going to correct IP/
port..

§  ..but there are 42 clients and 42 interfaces with same IP
address!

§  How to distinguish?

Copyright @2012 Communications and Information Technology Commission

26
26 29 April 2012

Solution, 2.1

§  We know client source IP address and port

§  We can route traffic based on that to different interface
(policy routing based on source)

Copyright @2012 Communications and Information Technology Commission

27
27 29 April 2012

Solution, 2.2

§  For each client, create interface with special name
• client IP 172.16.2.42, port 58022
• interface name: ac10022a_58022
• (interface name length limit 16 characters)

§  This is client source IP address and source port
§  Mark all packets coming from this combination ('fwmark')
§  Create separate route table, point tunnel server IP to this

interface name ('via device')
§  Create 'ip rule' to 'lookup' for this 'fwmark'

Copyright @2012 Communications and Information Technology Commission

28
28 29 April 2012

Sample debug output
–  2012-04-03 14:02:54,998 ddtb[11842] DEBUG: Running cmd:
–  ip link add name ac10022a_58022 type utun
–  ip addr add 192.0.2.69 dev ac10022a_58022
–  ip -f inet6 addr add 2001:67c:130:e00e::1 dev ac10022a_58022
–  ip link set dev ac10022a_58022 up
–  ip route del local 192.0.2.69 dev ac10022a_58022 scope host
–  ip route add 2001:67c:130:e00e::/64 dev ac10022a_58022
–  iptables -t mangle -A PREROUTING -s 172.16.2.42 -d 192.0.2.69 -p udp -m

multiport --sports 58022 -m multiport --dports 3653 -j MARK --set-mark 113
–  iptables -t mangle -A INPUT -s 172.16.2.42 -d 192.0.2.69 -p udp -m multiport --

sports 58022 -m multiport --dports 3653 -j MARK --set-mark 113
–  iptables -t mangle -A OUTPUT -s 172.16.2.42 -d 192.0.2.69 -p udp -m multiport

--sports 58022 -m multiport --dports 3653 -j MARK --set-mark 113

Copyright @2012 Communications and Information Technology Commission

29
29 29 April 2012

Sample debug output
–  2012-04-03 14:02:54,566 session[11842] DEBUG: Customer session

172.16.2.42:58022: init
–  2012-04-03 14:02:54,580 session[11842] DEBUG: md5: authentication

successful for login "<removed>"
–  2012-04-03 14:02:55,068 ddtb[11842] DEBUG: Running cmd: ip rule add fwmark

113 table 1113
–  … ip route add 192.0.2.69 dev ac10022a_58022 table 1113
–  … ip route flush cache
–  2012-04-03 14:02:55,240 ddtb[8834] DEBUG: Child with PID 11842 exited with

status code 0.
–  2012-04-03 14:02:55,240 session[8344] DEBUG: Closing customer session:

172.16.2.42:58022

Copyright @2012 Communications and Information Technology Commission

