

Advanced NetFlow for Service Providers

Aamer Akhter (<u>aa@cisco.com</u>) Benoit Claise (bclaise@cisco.com)

Agenda

- Introduction
- NetFlow Version 9
- Interesting Features on Traditional NetFlow
- Flexible NetFlow
- NetFlow for Security
- NetFlow for Application Visibility
- NetFlow Performance

NetFlow – What is it?

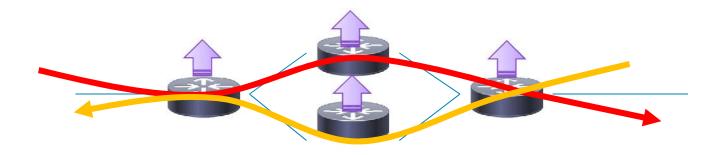
- Developed and patented at Cisco[®]
 Systems in 1996
- NetFlow is a standard for acquiring IP operational data
- Provides network and security monitoring, network planning, traffic analysis, and IP accounting
- IETF's IPFIX (RFC 5101) based on NetFlow v9 (with changes)

Network World Article – NetFlow Adoption on the raise http://www.networkworld.com/newsletters/nsm/2005/0314nsm1.html

Key Concept — *Flow Scalability

- Packet capture is like a wiretap
- *Flow is like a phone bill
- This level of granularity allows *Flow to scale for very large amounts of traffic

We can learn a lot from studying the phone bill


Who's talking to whom, over what protocols and ports, for how long, at what speed, for what duration, etc.

*Flow is a form of telemetry pushed from the routers/switches — each one can be a sensor

Key Concept — *Flow Follows the Topology

- Network traffic is often asymmetrical, even on small networks
- Probes typically require engineered symmetry
- This means that with *Flow, there's no need to engineer the network around the instrumentation

We can follow traffic through the network over its natural path We can see pps, bps, packet-size, QoS markings, TCP flags, etc. for specific apps/services at each point in the network We can validate traffic engineering, policy enforcement, etc. at any point in the topology, as long as *Flow is enabled

Why *Flow? Network Operator Benefits

Understand

- Productivity and utilization of assets in the network
- Application and network usage
- Impact of network changes and services
- NetFlow answers the who, what, when, where, and how network traffic is flowing
- Detect and classify security incidents with proven threat defence
- Improve network usage and application performance

Principal *Flow Uses

Service Provider

Peering Arrangements

Network Planning

Traffic Engineering

Accounting and Billing

Security Monitoring

Performance Monitoring

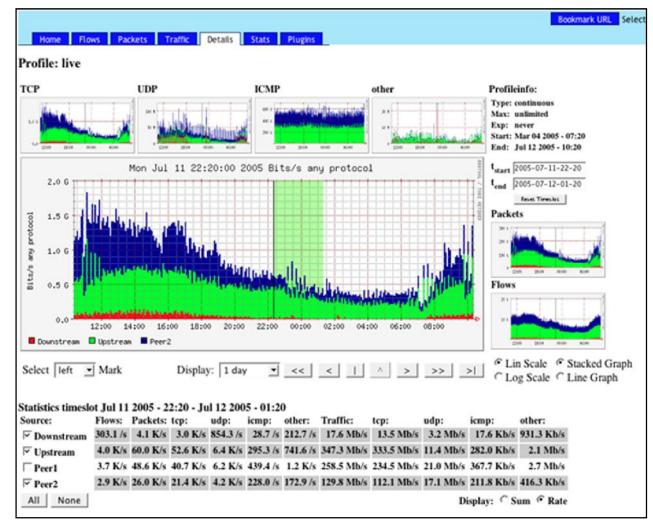
Enterprise

Internet access monitoring (protocol distribution, where traffic is going/coming)

User Monitoring

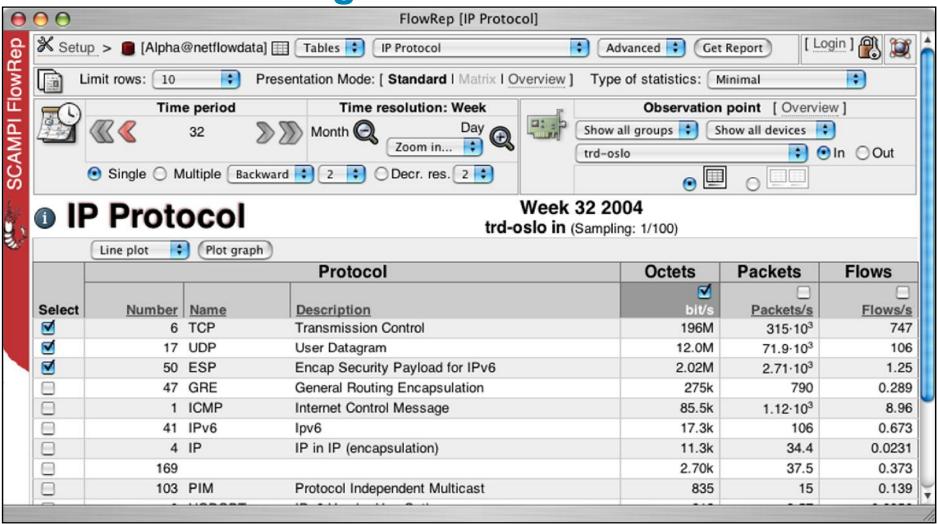
Application Monitoring

Chargeback billing for departments

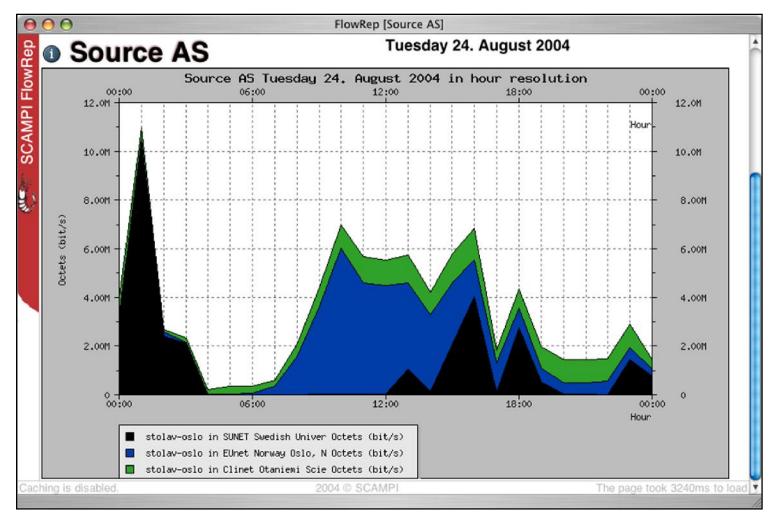

Security Monitoring

Performance Monitoring

Examples of use


Customer Challenge	Description	Problem Situation	NetFlow Resolution
Security	Detect SQL Slammer on day one	Detrimental incapacity of servers	NetFlow day-zero anomaly detection
Traffic Analysis	Bandwidth Hog	 Sluggish network performance Single user application monopolizing network 	Cost savings of \$7k in labor costs
Traffic Analysis	Full Circuit	Circuit 100% utilized	Quickly tracked problem and saved 300 hours = \$34k in labor costs
Capacity Planning	Slow network performance	 More servers and bandwidth added Users still complained Rented RMON probes - didn't work 	Cost savings of \$126k in probe costs
Capacity Planning	Poor network performance – low bandwidth	We need more bandwidth	Tracked point of slowdown – saved \$36k per yr. circuits

NetFlow—nfdump and nfsen



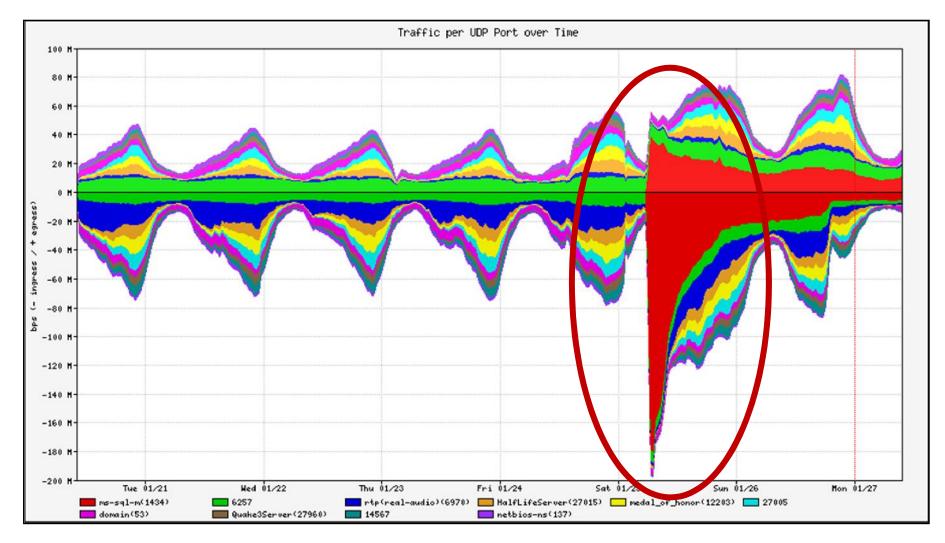
Source: http://nfsen.sourceforge.net

NetFlow—Stager

NetFlow—Stager (Cont.)

Source: UNINETT

NetFlow—Stager (Cont.)


			_	ep [IP Type (
X Setup >	[Alpha@netf	lowdata] 🛄 🔄 Tabl	les 🗧 IP Typ	e Of Service		Advanced 🛟 Get	t Report	Login] <u> </u>
Limit n	ows: 10	Presentation	n Mode: [Star	ndard I Matrix	I Overview]	Type of statistics:	Packets Details	•
	Time per	riod	Time reso	lution: Day	P	Observation	point [Oven	view]
	Thursd	ay 🔊 🔊 M	Veek 🕘 💷	Hour		how all groups 🛟 🚺	show all devices	•
	~			om in 😯 🕻		rd-oslo	•	In ○Out
🖲 S	ingle 🔘 Multiple	e Backward 📢	2 🛟 🔿 Dec	r. res. 2 🛟				
							~	
		of Corvi	60		Thurs	day 29. July 20	004	
	v de u				tool and	In the second second		
	Гуре С		66		trd-os	lo in (Sampling: 1/1	00)	
		lot graph	UC				00)	
					trd-os Packets		00)	
Lin	e plot 💽 (P	lot graph	Ø		Packets Minumum			
Select	ne plot P	lot graph	S Total	Percent	Packets Minumum bit/s	Maximum bit/s	Std.Dev.	Coef
Select	ToS 0	Packets/s 297-10 ³	₹ Total 3.21·10 ⁹	Percent 80.38%	Packets Minumum bit/s 170-10 ³	Maximum bit/s 380-10 ³	<u>Std.Dev.</u> 31.5·10 ⁶	Coef 0.23
Select	ToS 0 48	Packets/s 297·10 ³ 55.4·10 ³	Total 3.21-10 ⁹ 599-10 ⁶	Percent 80.38% 14.99%	Packets Minumum bit/s 170-10 ³ 12.9-10 ³	Maximum bit/s 380·10 ³ 110·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶	0.23
Select	ToS 0 48 8	Packets/s 297-10 ³ 55.4-10 ³ 12.6-10 ³	Total 3.21-10 ⁹ 599-10 ⁶ 136-10 ⁶	Percent 80.38% 14.99% 3.39%	Packets <u>Minumum</u> <u>bit/s</u> 170-10 ³ 12.9-10 ³ 2.78-10 ³	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶	0.23 0.5 0.79
Select	ToS 0 48	Packets/s 297·10 ³ 55.4·10 ³	Total 3.21·10 ⁹ 599·10 ⁶ 136·10 ⁶ 17.6·10 ⁶	Percent 80.38% 14.99% 3.39% 0.44%	Packets Minumum bit/s 170-10 ³ 12.9-10 ³	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³ 2.56·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶ 216·10 ³	0.23 0.5 0.79
Select	ToS 0 48 8	Packets/s 297-10 ³ 55.4-10 ³ 12.6-10 ³	Total 3.21-10 ⁹ 599-10 ⁶ 136-10 ⁶	Percent 80.38% 14.99% 3.39% 0.44%	Packets <u>Minumum</u> <u>bit/s</u> 170-10 ³ 12.9-10 ³ 2.78-10 ³	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶	0.23 0.5 0.79 0.29
Select	ToS 0 48 8 32	Packets/s 297·10 ³ 55.4·10 ³ 12.6·10 ³ 1.63·10 ³	Total 3.21·10 ⁹ 599·10 ⁶ 136·10 ⁶ 17.6·10 ⁶	Percent 80.38% 14.99% 3.39% 0.44% 0.44%	Packets <u>Minumum</u> <u>bit/s</u> 170-10 ³ 12.9-10 ³ 2.78-10 ³ 817	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³ 2.56·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶ 216·10 ³	Coef 0.23 0.5 0.79 0.29 1.
Select	ToS 0 48 8 32 16	Packets/s 297·10 ³ 55.4·10 ³ 12.6·10 ³ 1.63·10 ³ 1.61·10 ³	Total 3.21·10 ⁹ 599·10 ⁶ 136·10 ⁶ 17.6·10 ⁶ 17.4·10 ⁶	Percent 80.38% 14.99% 3.39% 0.44% 0.44% 0.09%	Packets <u>Minumum</u> <u>bit/s</u> 170-10 ³ 12.9-10 ³ 2.78-10 ³ 817 400	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³ 2.56·10 ³ 10.1·10 ³	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶ 216·10 ³ 1.08·10 ⁶	Coef 0.23 0.5 0.79 0.29 1. 0.39
Select	ToS 0 48 8 32 16 192	Packets/s 297·10 ³ 55.4·10 ³ 12.6·10 ³ 1.63·10 ³ 1.61·10 ³ 339	Total 3.21-10 ⁹ 599-10 ⁶ 136-10 ⁶ 17.6-10 ⁶ 17.4-10 ⁶ 3.66-10 ⁶	Percent 80.38% 14.99% 3.39% 0.44% 0.44% 0.09% 0.04%	Packets <u>Minumum</u> <u>bit/s</u> 170·10 ³ 12.9·10 ³ 2.78·10 ³ 817 400 192	Maximum bit/s 380·10 ³ 110·10 ³ 40.3·10 ³ 2.56·10 ³ 10.1·10 ³ 729	<u>Std.Dev.</u> 31.5·10 ⁶ 12.7·10 ⁶ 4.50·10 ⁶ 216·10 ³ 1.08·10 ⁶ 60.6·10 ³	Varianc Coefi 0.23 0.5 0.79 0.29 1. 0.39 2.0 3.1

Source: UNINETT

Arbor Peakflow SP — Application Distribution

Example—SQL Slammer

*Flow and SNMP

- All the *flow protocols are essentially push technologies:
 - Information is sent asynchronously from measurement node
 - Post-processing (aggregation) might be done on router/switch
 - Information is exported and usually immediately expired
 - NMS does not decide on rate of information
- SNMP is a pull technology
 - NMS needs to decide when and how often to poll device
 - Device may not retain information when polled
 - Device does not decide on rate of information
 - Correlated information may require multiple transactions

BGP Accounting

- BGP accounting provides a way of getting prefix traffic information
- BGP prefixes are colored in one of X colors
- Each color has counters (byte/packet) associated
- When traffic from/to prefix is received/sent counters are incremented.
- Easy form of aggregation usually limited 8 buckets
- Information organized only around buckets, no additional information provided.

sFlow

- Created by InMon (sells sFlow collectors)
- sFlow v2, v4 and v5 (v2 and v4 deprecated)
- sFlow somewhere in between NFv8 and NFv9/IPFIX

Extendable set of fields – called structures (fixed templates) sampling (sampling is required part of sFlow)

- Supported by (generally switch vendors) Alcatel, Extreme, Force10, HP, Hitachi (*)
- Incompatible with NetFlow V9/IPFIX, but some collectors support both NFv9 and sFlow

J-Flow / cflow

- J-Flow and cflowd is essentially NetFlow
- NetFlow collectors will support J-Flow/cflow output
- J-Flow and cflow are terms used by Juniper(v5, v8, v9)
- cflow term used by Alcatel (v5, v8, v9)
- Implementations do not support flexible templates

NetStream

- NetStream comes in three formats: v5, v8 and v9 Essentially mirroring NetFlow v5, v8 and v9
- Generally easily supported by NetFlow collectors However differences exist between NetStream v9 and NF v9

eg: NetFlow represents interfaces using ifIndex (standard MIB), NetStream represents using proprietary interface MIB

Collector needs to be explicitly told record is NetStream

- NetStream is supported by 3COM and Huawei
- Implementations do not support flexible templates

NetFlow

- V5, v8 and v9 export formats exist
- IETF standard (IPFIX) is based on v9
- NetFlow v9 Documented in RFC3954 (informational) Lack of regulation has lead to minor (and corrected) collisions in field (nProbe) identifiers
- Enjoys wide collector support.
- NFv9 collectors generally need minor tweaks to support IPFIX
- Supported by cisco, Alcatel, Juniper (as J-Flow/cflow), Packeteer (v5), 3COM/ Huawei (sort of), Riverbed, Adtran, Enterasys, wide open-source support
- Cisco implementations support flexible templates
 Providing flexible reports down the field level

IETF: IP Flow Information Export WG (IPFIX)

IPFIX protocol specifications

Changes in terminology but same NetFlow Version 9 principles (IPFIX version field says '10')

- Improvements vs. NetFlow v9: SCTP-PR, security, variable length information element, IANA registration, etc.
- Generic streaming protocol, not flow-centric anymore
- Security:

Threat: confidentiality, integrity, authorization

Solution: DTLS on SCTP-PR

Anonymization draft

IPFIX information model

Most NetFlow v9 information elements ID are kept

Proprietary information element specification

IETF: IP Flow Information Export WG (IPFIX)

- RFC3954 Cisco Systems NetFlow Services Export Version 9
- RFC3917 Requirements for IP Flow Information Export Gathers all IPFIX requirements for the IPFIX evaluation process
- RFC3955 Evaluation of Candidate Protocols for IPFIX
- RFC5101 Specification of the IPFIX Protocol for the Exchange of IP Traffic Flow Information
- RFC5102 Information Model for IP Flow Information Export
- RFC5103 "Bidirectional Flow Export using IP Flow Information Export (IPFIX)"

IPFIX: Interesting Drafts

- Export of Application Information in IPFIX draft-claise-export-application-info-in-ipfix
- Exporting MIB variables using the IPFIX Protocol draft-johnson-ipfix-mib-variable-export
- Export of Structured Data in IPFIX draft-ietf-ipfix-structured-data
- IP Flow Anonymisation Support draft-ietf-ipfix-anon
- Information Elements for Flow Performance Measurement draft-akhter-ipfix-perfmon

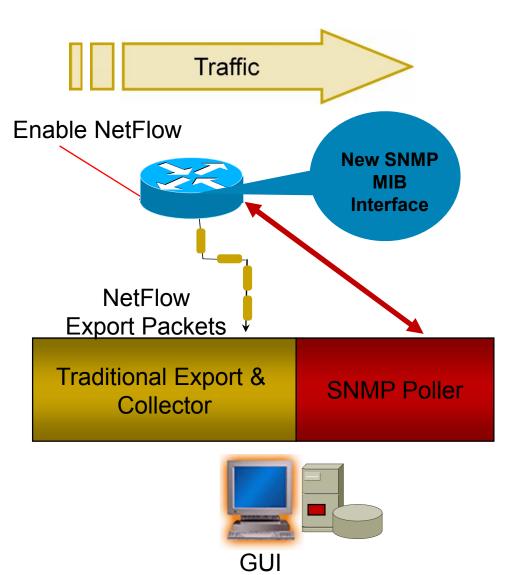
IETF: Packet Sampling WG (PSAMP)

• PSAMP is an effort to:

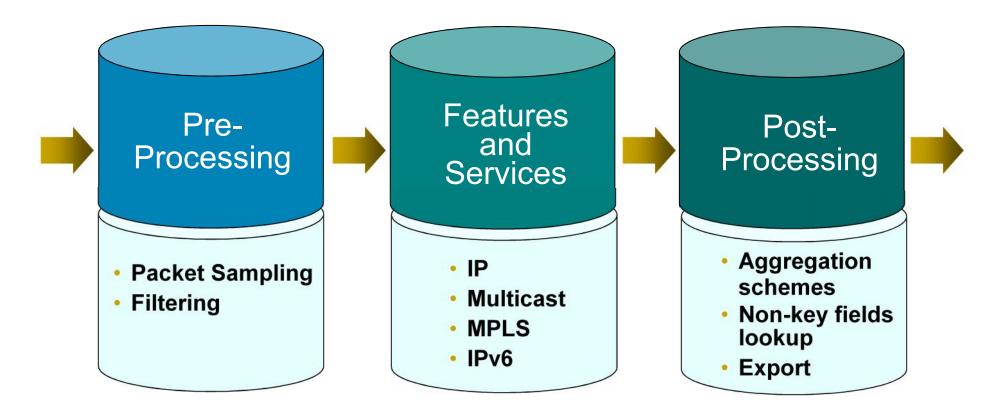
Specify a set of selection operations by which packets are sampled, and describe protocols by which information on sampled packets is reported to applications

Sampling and filtering techniques for IP packet selection

To be compliant with PSAMP, we must implement at least one of the mechanisms: sampled NetFlow, NetFlow input filters are already implemented


PSAMP protocol specifications

Agreed to use IPFIX for export protocol


 Information model for packet sampling export Extension of the IPFIX information model

In the olden times... Flow was Defined By Seven Unique Keys

- Source IP address
- Destination IP address
- Source port
- Destination port
- Layer 3 protocol type
- TOS byte (DSCP)
- Input logical interface (ifIndex)

NetFlow Processing Order

NetFlow Cache Example

1. Create and update flows in NetFlow cache

2. Expiration

Srclf	SrclPadd	Dstlf	DstlPadd	Protocol	тоѕ	Flgs	Pkts	Src Port	Src Msk	Src AS	Dst Port	Dst Msk	Dst AS	NextHop	Bytes/ Pkt	Active	Idle
Fa1/0	173.100.21.2	Fa0/0	10.0.227.12	11	80	10	11000	00A 2	/24	5	00A2	/24	15	10.0.23.2	1528	1745	4
Fa1/0	173.100.3.2	Fa0/0	10.0.227.12	6	40	0	2491	15	/26	196	15	/24	15	10.0.23.2	740	41.5	1
Fa1/0	173.100.20.2	Fa0/0	10.0.227.12	11	80	10	10000	00A 1	/24	180	00A1	/24	15	10.0.23.2	1428	1145.5	3
Fa1/0	173.100.6.2	Fa0/0	10.0.227.12	6	40	0	2210	19	/30	180	19	/24	15	10.0.23.2	1040	24.5	14

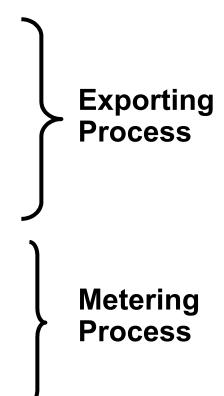
Inactive timer expired (15 sec is default)

Active timer expired (30 min is default)

NetFlow cache is full (oldest flows are expired)
RST or FIN TCP flag

Srclf	SrclPadd	Dstlf	DstlPadd	Protocol	тоз	Flgs	Pkts	Src Port	Src Msk	Src AS	Dst Port	Dst Msk	Dst AS	NextHo	p Bytes Pkt	^{5/} Active	Idle
Fa1/0	173.100.21.2	Fa0/0	10.0.227.12	11	80	10	11000	00A2	/24	5	00A2	/24	15	10.0.23	.2 1528	8 1800	4
	3. Aggregation 4. Export version Non-aggregated flows—export version 5 or 9																
	4. Expo	ort ve	ersion	/s—exp	ort v	ersio	n 5 or	[,] 9			•				ggrega	ation	

Extensibility and Flexibility Requirements Phases Approach

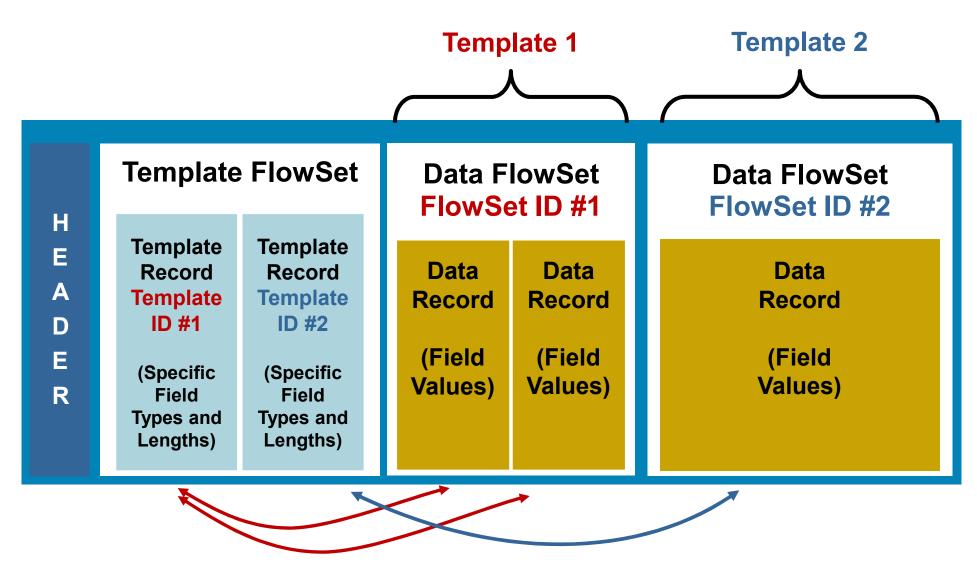

- Traditional NetFlow with the v5 or v8 NetFlow export Really needed something flexible and extensible
- Phase One: NetFlow Version 9

Advantages: extensibility

Integrate new technologies/data types quicker (MPLS, IPv6, BGP next hop, etc.)

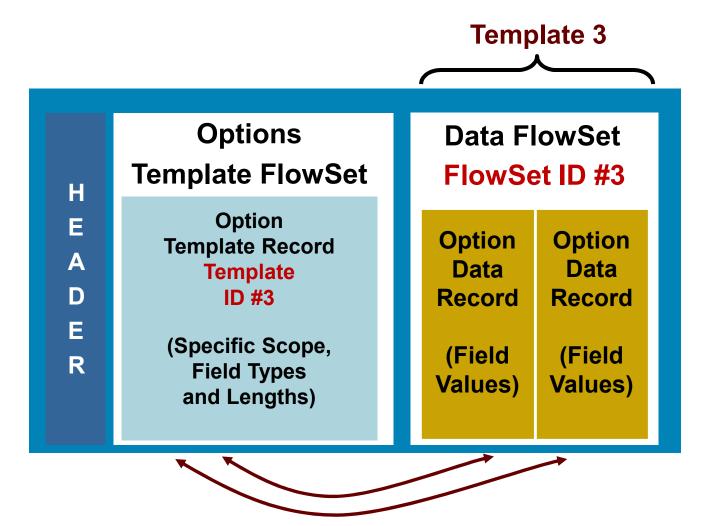
Integrate new aggregations quicker

- Phase Two: Flexible NetFlow
 - Advantages: cache and export content flexibility
 - User selection of flow keys
 - User definition of the records



NetFlow Open Source Tools

Product Name	Primary Use	Comment	OS
Cflowd	Traffic Analysis	No longer supported v5, v8	UNIX
Flow-tools	Collector Device	v5, v8, v9 (only old fields)	UNIX
Flowd	Collector Device	V5, v7, and v9	BSD, Linux
FlowScan	Reporting for Flow-Tools	-	UNIX
IPFlow	Traffic Analysis	Support V9, IPv4, IPv6, MPLS, SCTP, etc	Linux, FreeBSD, Solaris
NetFlow Guide	Reporting Tools		BSD, Linux
NetFlow Monitor	Traffic Analysis	Supports V9	UNIX
Netmet	Collector Device	v5, support v9	Linux
NTOP	Security Monitoring	v9	UNIX
Stager	Reporting for Flow-Tools		UNIX
Nfdump/nfsen	Traffic Analysis	V5, v7, v9	UNIX


NetFlow v9

NetFlow Version 9 Export Packet

NetFlow Version 9 Export Packet

Options Template FlowSet Specifies the Scope: Cache, System, Template, etc.

Interesting Features on Traditional NetFlow

Multicast & NetFlow

Multicast NetFlow ingress

Sees incoming mcast flow

fan out is not represented as there are multiple interfaces

Byte counts do not include replication

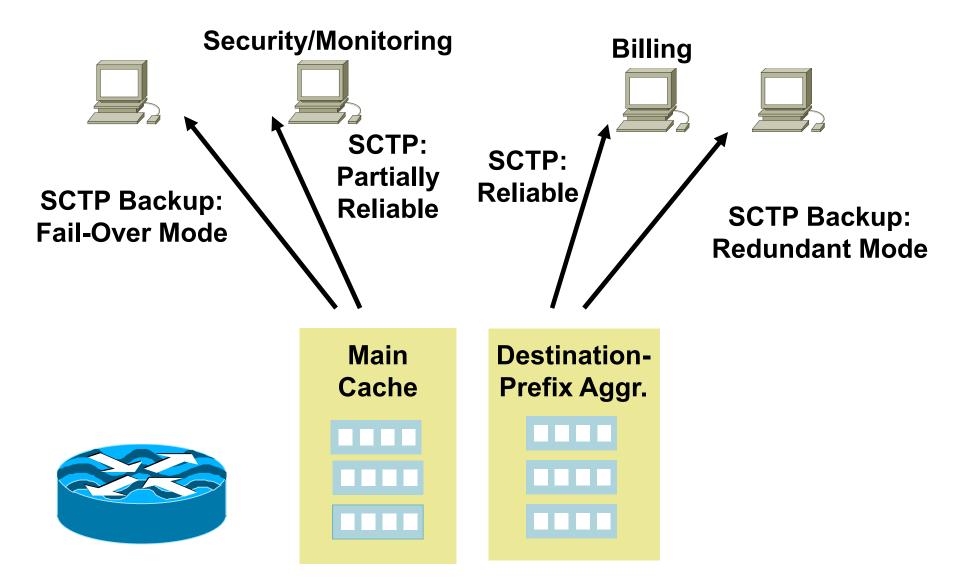
Multicast NetFlow egress

Sees outgoing multicast packets

fan out is represented by multiple cache entries (one per output interface)

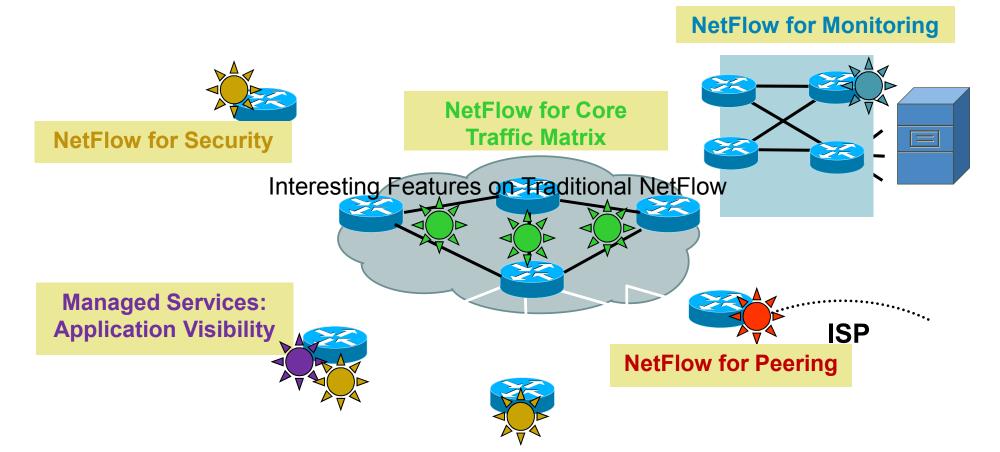
- New fields that represent the size of OIL (output interface list)
- Display the multicast data that fails the Reverse Path Forwarding (RPF) check
- No NetFlow export over multicast

IPv6 and NetFlow


- New NetFlow fields represent IPv6 header fields
 - Needs NFv9 to export
 - Lack of IPv6 capable NetFlow collectors (chicken or egg situation)
 - Currently need it export records about IPv6 via IPv4
- A flow is either IPv4 or IPv6!
 - Separate metering and export for v4 vs. v6, otherwise waste of export bandwidth.

NetFlow Reliable Export with SCTP

SCTP: stream control transport protocol (RFC4960)


- Reliable data transfer
- Congestion control and avoidance
- Multihoming support
- One association support for multi-streams
- SCTP-PR: SCTP partially reliable (RFC3578)
 - Three modes of reliability: reliable, partial reliable, unreliable
- Advantages: (Options) templates sent reliably
- Backup Options:
 - Fail-over mode: open the backup connection when the primary fails Redundant mode: open the backup connection in advance, and already send the templates

NetFlow Reliable Export with SCTP

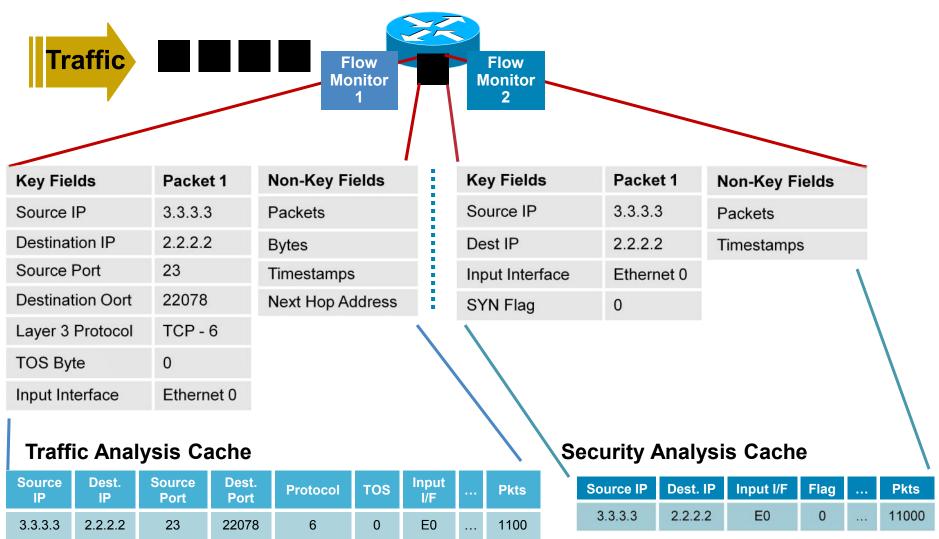
Flexible NetFlow

Typical NetFlow Deployment

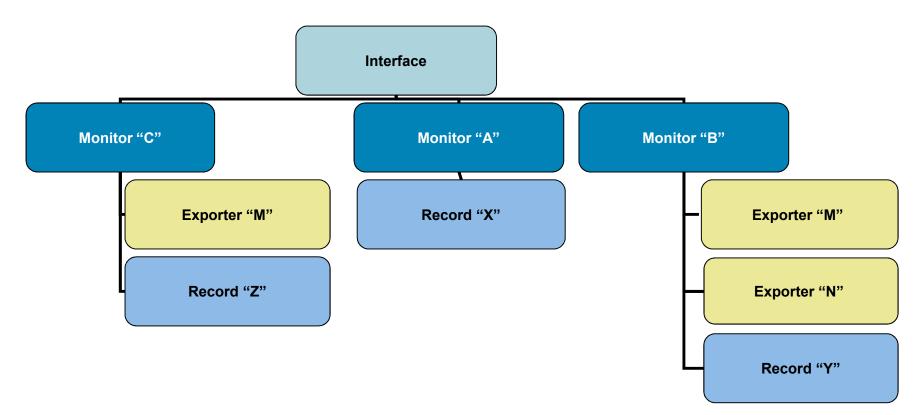
Flexible NetFlow High-Level Concepts and Advantages

 Flexible NetFlow feature allows user configurable NetFlow record formats, selecting from a collection of fields:

Key, non-key, counter, timestamp


Advantages:

Tailor a cache for specific applications, not covered by existing 21 NetFlow features in traditional NetFlow


Different NetFlow caches: per subinterface, per direction (ingress, egress), per sampler, per ...

Better scalability since flow record customization for particular application reduces number of flows to monitor

Flexible NetFlow Multiple Monitors with Unique Key Fields

Flexible NetFlow Model

- A single record per monitor
- Potentially multiple monitors per interface
- Potentially multiple exporters per monitor

Flexible Flow Record: Key Fields

Flow			
Sampler ID	Payload Size		
Direction Profix (Source or Interface	Packet Section (Header)		
Input	Packet Section (Payload)		
Output Minimum-Mask (Sou Layer 2 Dest	·		
Prote VLAN	ions 1ap		
Frag Destination Flag:	sion		
Frag Offse address	cedence		
Iden	CP		
Head Destination Total MAC addres	s S		

IPv6	
IP (Source or Destination)	Payload Size
Prefix (Source or Destination)	Packet Section (Header)
Mask (Source or Destination)	Packet Section (Payload)
Minimum-Mask (Source or Destination)	DSCP
Protocol	Extension Headers
Traffic Class	Hop-Limit
Flow Label	Length
Option Header	Next-header
Header Length	Version
Payload Length	

Flexible Flow Record: Key Fields

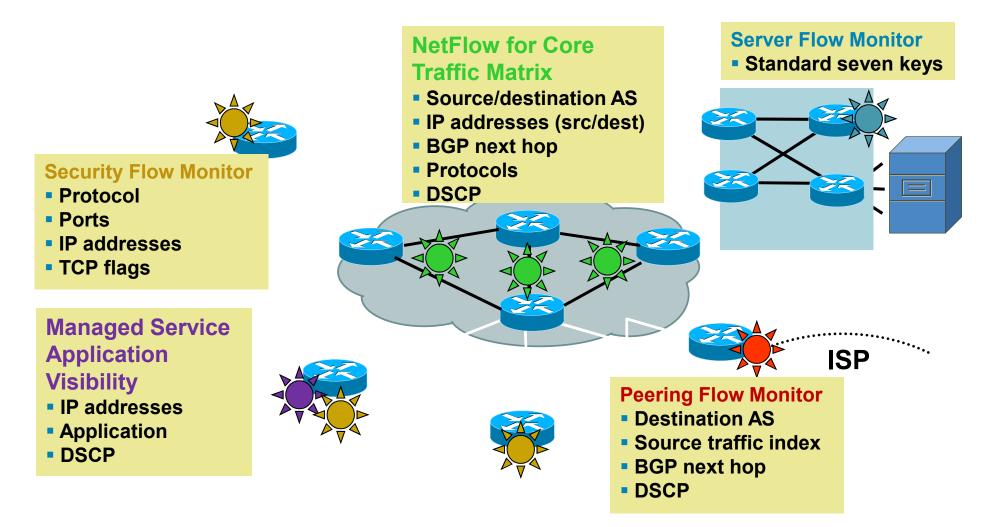
TCP Urgent Pointer

Application Routing Transport src or dest AS **Destination Port** TCP Flag: ACK **Application ID*** Peer AS Source Port **TCP Flag: CWR** Traffic Index **ICMP** Code **TCP Flag: ECE Multicast** Forwarding **ICMP** Type **TCP Flag: FIN** Status Replication IGMP Type* TCP Flag: PSH Factor* **IGP Next Hop TCP ACK Number** TCP Flag: RST **BGP Next Hop RPF** Check **TCP Header Length TCP Flag: SYN** Drop* Input VRF **TCP Sequence Number TCP Flag: URG** Name Is-Multicast **TCP Window-Size** UDP Message Length NEW **TCP Source Port UDP Source Port UDP** Destination Port **TCP** Destination Port *: IPv4 Flow only

NEW

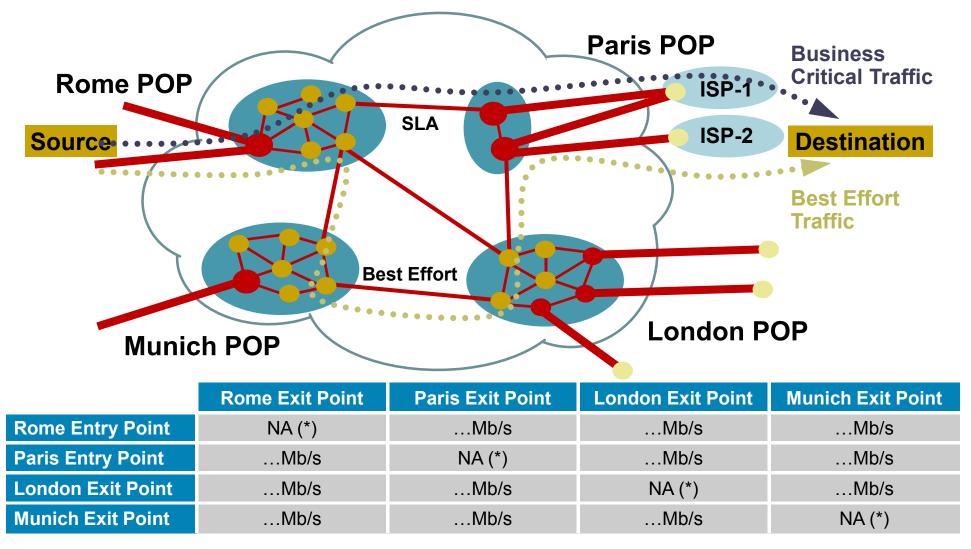
Flexible Flow Record: Non-Key Fields

Counters	Timestamp	IPv4	IPv4 and IPv6
Bytes	sysUpTime First Packet	Total Length Minimum (*)	Total Length Minimum (**)
Bytes Long	sysUpTime First Packet	Total Length Maximum (*)	Total Length Maximum (**)
Bytes Square Sum		TTL Minimum	
Bytes Square Sum Long		TTL Maximum	
Packets			
Packets Long			


Plus any of the potential "key" fields: will be the value from the first packet in the flow

> (*) IPV4_TOTAL_LEN_MIN, IPV4_TOTAL_LEN_MAX (**)IP_LENGTH_TOTAL_MIN, IP_LENGTH_TOTAL_MAX

Three Types of NetFlow Caches


- Normal cache (traditional NetFlow)
 - More flexible active and inactive timers: one second minimum
- Immediate cache
 - Flow accounts for a single packet
 - Desirable for real-time traffic monitoring, DDoS detection, logging Desirable when only very small flows are expected (ex: sampling) Caution: may result in a large amount of export data
- Permanent cache
 - To track a set of flows without expiring the flows from the cache
 - Entire cache is periodically exported (update timer)
 - After the cache is full (size configurable), new flows will not be monitored
 - Uses update counters rather than delta counters

NetFlow Deployment Scenarios

NetFlow and Capacity Planning

The Core Traffic Matrix Traffic Engineering and Capacity Planning

(*) Potentially Local Exchange Traffic

Core Capacity Planning the Big Picture

- 1. The ability to offer SLAs is dependent upon ensuring that core network bandwidth is adequately provisioned
- 2. Adequate provisioning (without gross over provisioning) is dependent upon accurate core capacity planning
- 3. Accurate core capacity planning is dependent upon understanding the core traffic matrix and flows and mapping these to the underlying topology
- 4. A tool for what if scenarios

BGP Next Hop TOS Aggregation Typical Example

Internal Traffic PE to PE
 Evternel Traffic Metrix DE to DC

External Traffic Matrix PE to BGP AS

NetFlow BGP Next Hop TOS Aggregation Flow Keys

Key Fields (Uniquely Identifies the Flow)

- Origin AS
- Destination AS
- Inbound Interface
- Output Interface
- ToS/DSCP (*)
- BGP Next Hop

Additional Export Fields

- Flows
- Packets
- Bytes
- First SysUptime
- Last SysUptime

Core Traffic Matrix with Flexible NetFlow

Key Fields (Uniquely Identifies the Flow)

- Origin AS
- Destination AS
- Inbound Interface
- Output Interface
- ToS/DSCP (*)
- BGP Next Hop

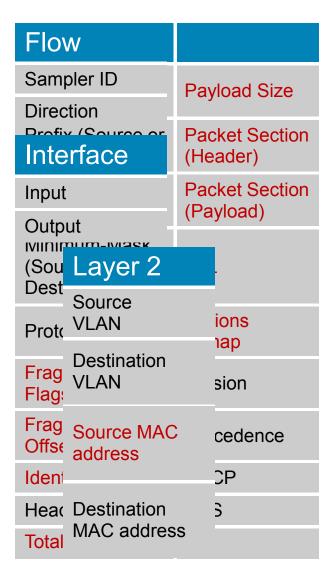
Additional Export Fields

- Flows

- Packets

- Bytes
- First SysUptime
- Last SysUptime

- Less flow records, less CPU impact
- Potentially choose higher sampling rate for a better accuracy
- (*) Before Any Recoloring


NetFlow and Security Analysis

What Does a DoS Attack Look Like?

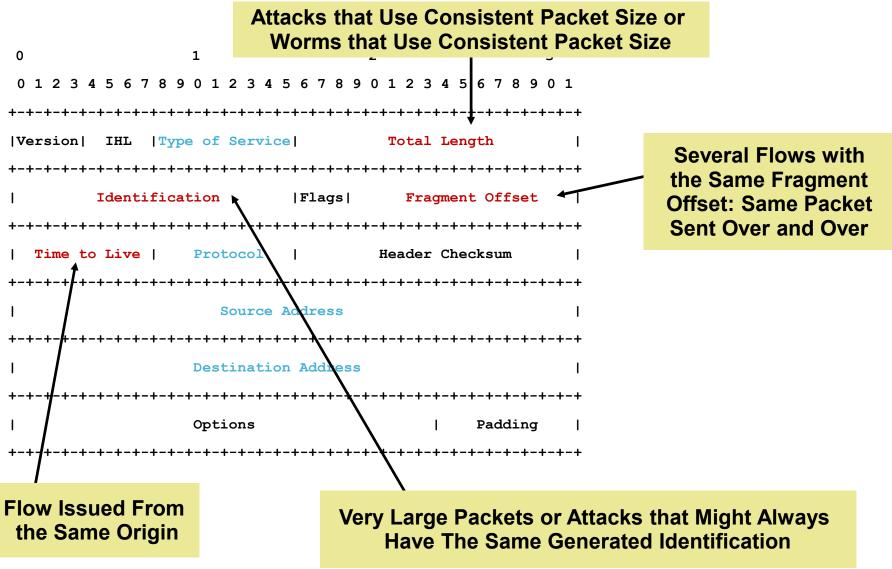
Router	# show ip cacl	he flo	w								
SrcIf	SrcIPaddress	SrcP	SrcAS	DstIf D	stIPaddres	B DstP	DstAS	Pr	Pkts	B/Pk	Λ
29	192.1.6.69	77	aaa	49	194.20.2.2	1308	bbb	6	1	40	
29	192.1.6.222	1243	aaa	49	194.20.2.2	1774	bbb	6	1	40	
29	192.1.6.108	1076	aaa	49	194.20.2.2	1869	bbb	6	1	40	
29	192.1.6.159	903	aaa	49	194.20.2.2	1050	bbb	6	1	40	
29	192.1.6.54	730	aaa	49	194.20.2.2	2018	bbb	6	1	40	
29	192.1.6.136	559	aaa	49	194.20.2.2	1821	bbb	6	1	40	
29	192.1.6.216	383	aaa	49	194.20.2.2	1516	bbb	6	1	40	
29	192.1.6.111	45	aaa	49	194.20.2.2	1894	bbb	6	1	40	
29	192.1.6.29	1209	aaa	49	194.20.2.2	2 1600	bbb	6	1	40	/

- Typical DoS attacks have the same (or similar) entries: Input interface, destination IP, one packet per flow, constant bytes per packet (B/Pk)
- Don't forget show ip cache verbose flow | include ...
- Export to a security-oriented collector: CS-MARS, Lancope, Arbor

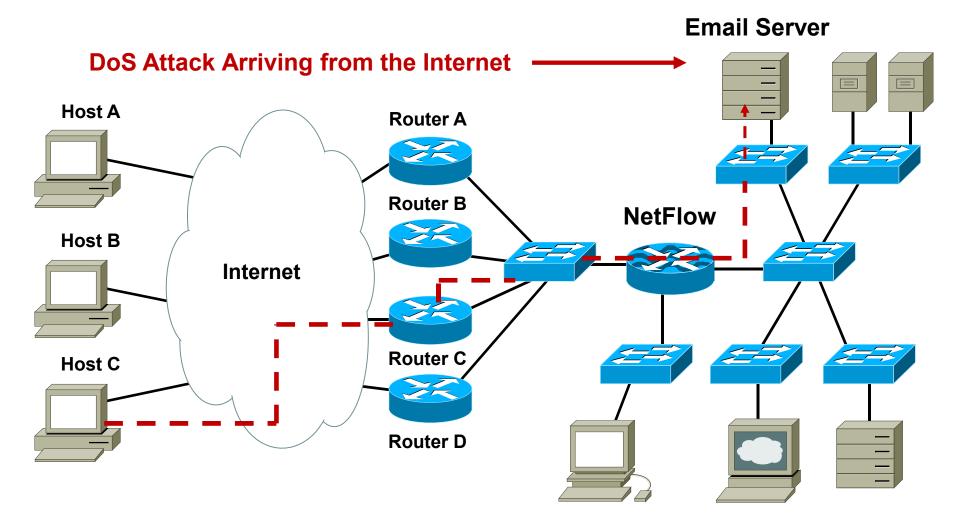
Flexible Flow Record: Key Fields

IPv6	
IP (Source or Destination)	Payload Size
Prefix (Source or Destination)	Packet Section (Header)
Mask (Source or Destination)	Packet Section (Payload)
Minimum-Mask (Source or Destination)	DSCP
Protocol	Extension Headers
Traffic Class	Hop-Limit
Flow Label	Length
Option Header	Next-header
Header Length	Version
Payload Length	

Flexible Flow Record: Key Fields


Routing	Transport		Application
src or dest AS	Destination Port	TCP Flag: ACK	Application ID*
Peer AS	Source Port	TCP Flag: CWR	
Traffic Index	ICMP Code	TCP Flag: ECE	Multiooot
Forwarding	ІСМР Туре	TCP Flag: FIN	Multicast
Status	IGMP Type*	TCP Flag: PSH	Replication
IGP Next Hop	TCP ACK Number	TCP Flag: RST	Factor*
BGP Next Hop	TCP Header Length	TCP Flag: SYN	RPF Check
Input VRF Name	TCP Sequence Number	TCP Flag: URG	Drop*
Name	TCP Window-Size	UDP Message Length	Is-Multicast
	TCP Source Port	UDP Source Port	
	TCP Destination Port	UDP Destination Port	
	TCP Urgent Pointer		*: IPv4 Flow only

Flexible Flow Record: Non-Key Fields


Counters	Timestamp	IPv4	IPv4 and IPv6	
Bytes	sysUpTime First Packet	Total Length Minimum (*)	Total Length Minimum (**)	
Bytes Long	sysUpTime First Packet	Total Length Maximum (*)	Total Length Maximum (**)	
Bytes Square Sum		TTL Minimum		
Bytes Square Sum Long		TTL Maximum		
Packets	(*) IPV4_TOTAL_LEN_MIN, IPV4_TOTAL_LEN_MAX (**)IP_LENGTH_TOTAL_MIN, IP_LENGTH_TOTAL_MAX			
Packets Long				

 Plus any of the potential "key" fields: will be the value from the first packet in the flow

Useful Fields for Security Monitoring

Source MAC Address Example

Report the MAC Address for Ethernet, FastEthernet, and GigabitEthernet

The Forwarding Status Field

- What did the router do with the packet?
- Why did it drop it?

Unknown (00b)
Forwarded (01b)
Dropped (10b) → ACL, QoS
Consumed (11b) → Destined to the router (ex: management traffic)

Packet Section Fields

- Contiguous chunk of a packet of a user configurable size, used as a key or a non-key field
- Sections used for detailed traffic monitoring, DDoS attack investigation, worm detection, other security applications
- Chunk defined as flow key, should be used in sampled mode with immediate aging cache

NetFlow L2 and Security Monitoring (for Traditional NetFlow)

Layer 2 IP header fields

Source MAC address field from frames that are received by the NetFlow router

Destination MAC address field from frames that are transmitted by the NetFlow router

Received VLAN ID field (802.1q and Cisco's ISL)

Transmitted VLAN ID field (802.1q and Cisco's ISL)

Extra Layer 3 IP header fields

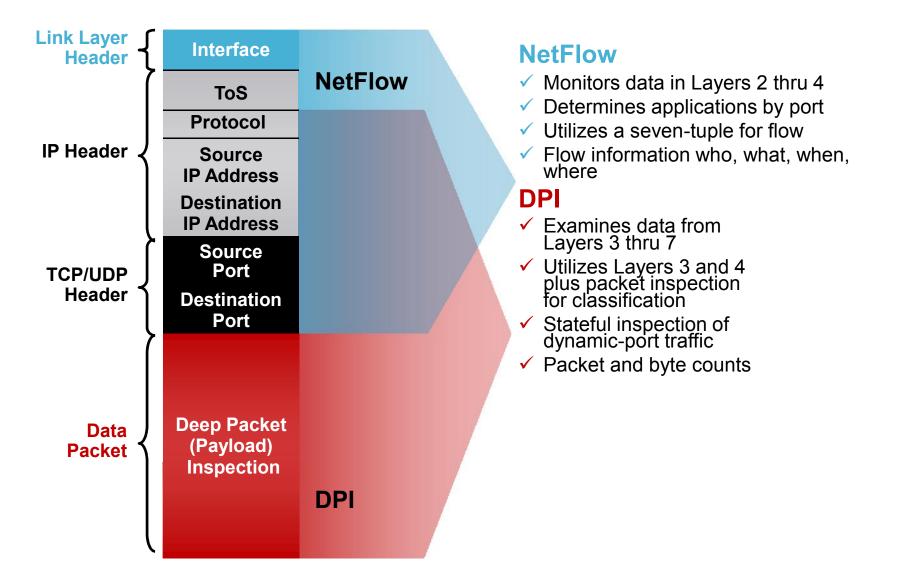
- Time-to-live field Identification field Packet length field ICMP type and code Fragment offset
- For IPv4 and IPv6

Embedded Applications of NetFlow NetFlow Top Talkers

- The flows that are generating the heaviest traffic in the cache are known as the top talkers; prefer top flows
- Allows flows to be sorted by either of the following criteria:

By the total number of packets in each top talker By the total number of bytes in each top talker

Match criteria for the top talkers, work like a filter


NetFlow beyond routers and Switches Firewall Application

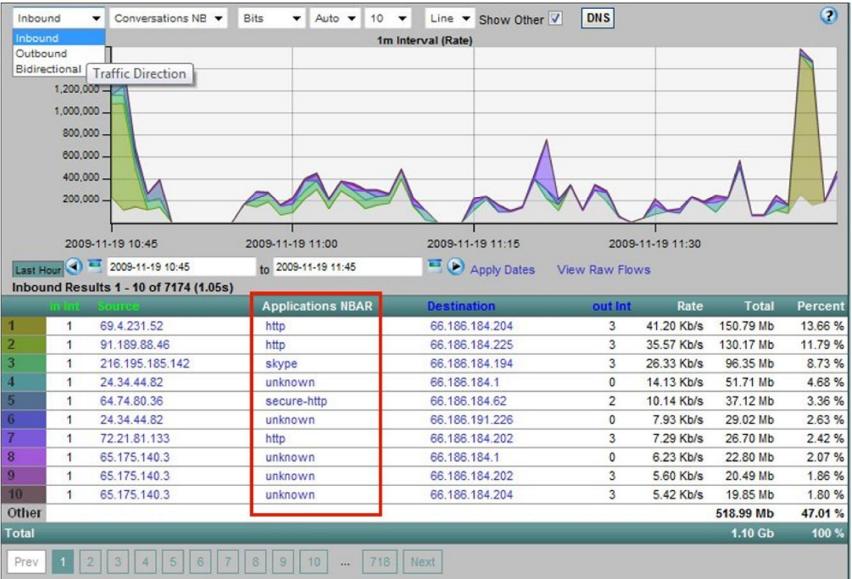
- Firewalls process large number of 'transactions'
- Need for logging transactions and stitching on 'inside' and 'outside' to counter anonymization of flows.
- Traditionally handled via syslog
 Data to text, text needs to be parsed, back to structured data
- Flow event information can now be exported through NetFlow v9
 - Information about NAT modifications to the traffic Information about Flows denied by security policy Information about AAA/usernames associated with flows bidirectional flows
- Provides scalable logging

10-Gbps flows, 100-k connections per second = lots of logs

NetFlow and Application Visibility

Network Based Application Recognition What's running on my network?

NetFlow and DPI Integration


- NetFlow is the de-facto mechanism to provide visibility on network utilization who/what/where/when
- Applications can no longer be identified by just L3/L4 information

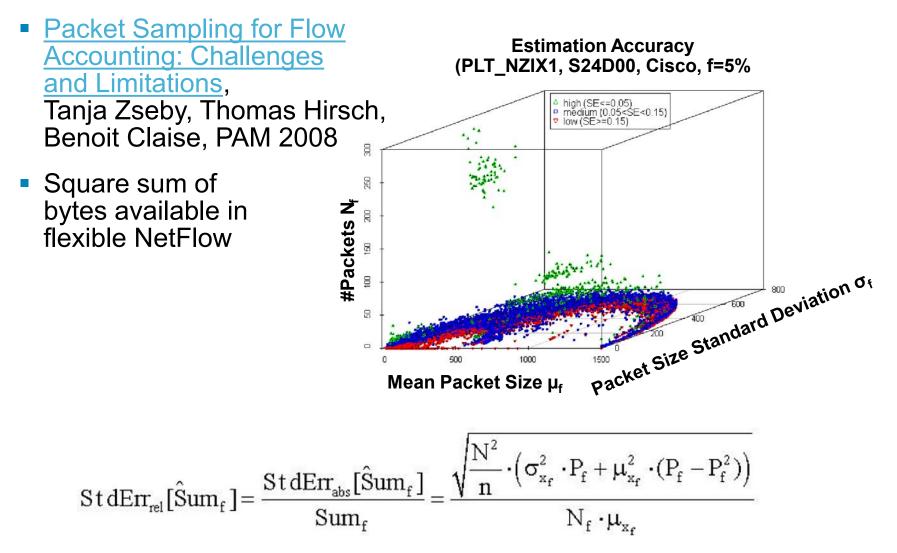
Application visibility is a **must**

Example: port 80 is overloaded

- Deep packet inspection boxes to identify applications a cottage industry
- With NetFlow + DPI integration provides single report mapping L2-L7 information

Reporting Example (Plixer)

NetFlow and Performance Measurement


- RTP (voice/video) and TCP user flows analyzed on routers to report:
 - RTP: per packet loss, loss bursts, jitter
 - TCP: loss bursts, round trip time
- Back to benefits of *Flow:
 - Summary reports (*Flow is not a packet capture)
 - Follows topology
- Integrated performance measurements provide easy validation of 'network signal', accelerated fault isolation

The Cost of NetFlow

Local box measurement impact

- How is the measurement done (ASIC, CPU, etc) Might have TCAM impact (number of flow entries) Might have CPU impact (reducing forwarding performance)
- Does every packet need to be measured?
 - Various sampling methodologies (random time, random packet, 1 in X, etc)
 - Drastic reduction in measurement hit
- Where is the export done?
 Distributed across line cards vs. centralized
- Considerations and tests laid out in: draft-novak-bmwg-ipflow-meth-*

Accuracy Impact Random Packet NetFlow Sampling

NetFlow Summary and Conclusion

- NetFlow is a mature feature (in Cisco IOS since 1996)
- NetFlow provides input for accounting, performance, security, and billing applications
- NetFlow has IETF and industry leadership
- NetFlow v9 eases the exporting of additional fields
- Flexible NetFlow is a major enhancement
- A lot of features have been added Stay tuned for more
- NetFlow export will become THE push mechanism ③

References

- IPFIX http://datatracker.ietf.org/wg/ipfix/charter/
- NetFlow analysis tools
 - http://bit.ly/netflow-freeware (cisco) http://www.switch.ch/network/projects/completed/TF-NGN/floma/software.html

Linux NetFlow reports HOWTO

http://www.linuxgeek.org/NetFlow-howto.php

Arbor Networks Peakflow SP and Peakflow/X

http://www.arbornetworks.com

nfdump and nfsen

http://nfdump.sourceforge.net http://nfsen.sourceforge.net

Stager

http://software.uninett.no/stager/

NetFlow

http://www.cisco.com/go/netflow

Cisco network accounting services

Comparison of Cisco NetFlow versus other available accounting technologies

http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/nwact_wp.htm

#