

Trends in Internet Traffic Patterns

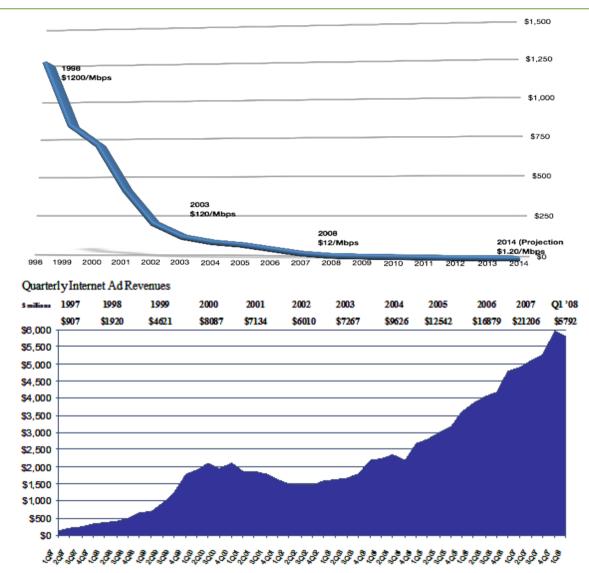
Darren Anstee, EMEA Solutions Architect

This Talk

- The End of the Internet as we Know it
- We present the largest study of Internet traffic every conducted
 - Peer-reviewed at a networking research conference
- What is really changing in the Internet
 - And how this impacts carriers, enterprise, consumers and basically everything
 - S. lekel-Johnson, D. McPherson Arbor Networks, Inc.
 - J. Oberheide, F. Jahanian University of Michigan

The Internet.....

- ... is changing dramatically
 - Social networking, Cloud, etc



- But this is not the whole story...
- Even more significant changes in
 - Internet / carrier economics
 - And fundamental end-to-end design principals
 - With dramatic impact on security and future networks

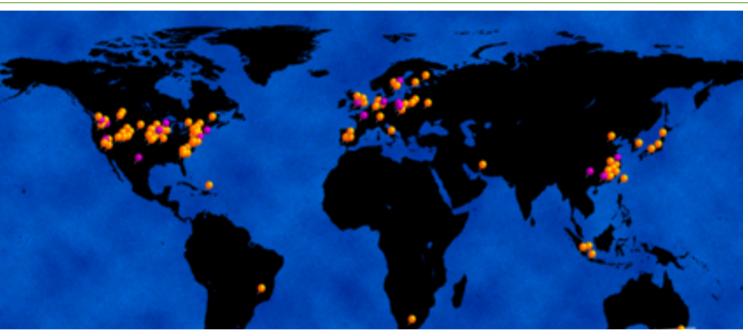
Specific Market Forces

Revenue from Internet Transit Source: Dr. Peering, Bill Norton

Revenue from Internet Advertisement Source: Interactive Advertising Bureau

Means ISP / Content Strategies Changing

- Commoditization of IP and Hosting / CDN
 - Drop price of wholesale transit
 - Drop price of video / CDN
 - Economics and scale drive enterprise to "cloud"
- Consolidation
 - Bigger get bigger (economies of scale)
 - e.g., Google, Yahoo, MSFT acquisitions
- Success of bundling / Higher Value Services
 - Triple and quad play, etc.
- New economic models
 - Paid content (ESPN 360), paid peering, etc.
 - Difficult to quantify due to NDA / commercial privacy
- Disintermediation
 - Direct interconnection of content and consumer
 - Driven by both cost and increasingly performance



Industry Speculation

- No shortage of speculation about about these ongoing large Internet changes (e.g. Wired, Wall Street Journal)
- But very, very, little hard data...
 - None really
- Not surprising since providers do not like to share traffic information
- So really no good data since 1995

This Talk

Graphic not an accurate representation of current ATLAS deployments

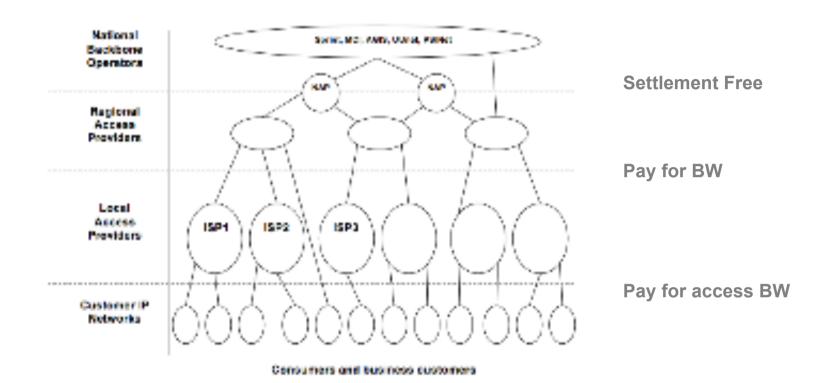
- Largest study of Internet traffic ever conducted
- Leverage large, widely deployed commercial Internet monitoring infrastructure
- Global deployment across 110+ ISPs / Content Providers
 - Near real-time traffic and routing statistics (14 Tbps)
 - Participation voluntary and all data sources are anonymous

Internet Observatory, Data Details

- Within a given ISP, commercial probe infrastructure
 - Monitors "flow" and routing across possible hundreds of routers
 - Probes topology aware of ISP, backbone and customer boundaries
 - Routers typically include most of peering / transit edge
 - Some deployments include portspan / inline appliances
- Deployments send anonymous XML file to central servers
 - Includes self-categorization of primary geographic region and type
- Data includes coarse grain anonymized traffic engineering statistics

Study Accuracy (why we think we got it right)

- We guess we're directly monitoring around 25% all inter-domain traffic
- And then we obtained "ground-truth" numbers from 12 ISPs
- And compared our predictions
- We got it right


Measurement Confidence

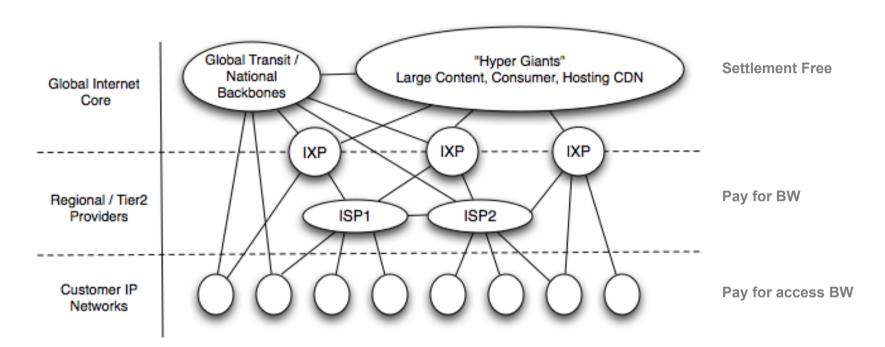
Known Peak Tbps

Original Internet (1995 – 2007)

- Textbook diagram (still taught today)
- Hierarchical, relatively sparsely inter-connected Internet
- All money flows uphill

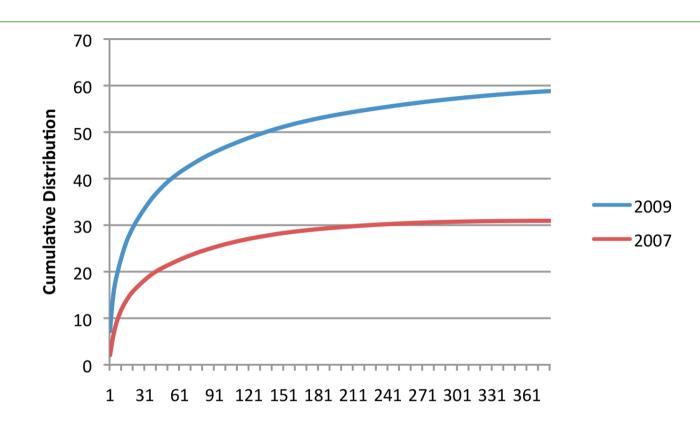
Largest Carriers: Then and Now

Rank	2007 Top Ten	%	Rank	2009 Top Ten	%
1	ISP A	5.77	1	ISP A	9.4
2	ISP B	4.55	2	ISP B	5.7
3	ISP C	3.35	3	Google	5.2
4	ISP D	3.2	4	-	
5	ISP E	2.77	5	-	
6	ISP F	2.6	6	Comcast	3.3
7	ISP G	2.24	7	-	
8	ISP H	1.82	8	-	
9	ISP I	1.35	9	-	
10	ISP J	1.23	10	-	


Based on analysis of anonymous ASN (origin/transit) data (as a weighted average % of all Internet Traffic). Top ten has NO direct relationship to study participation.

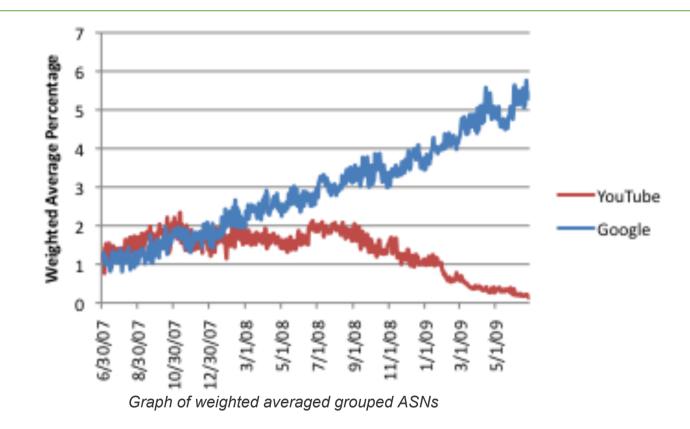
- In 2007, top ten match "tier-1" ISPs (e.g., Wikipedia)
- In 2009, global transit carry significant traffic volumes
 - But Google and Comcast join the list
 - And a significant percentage of ISP A traffic is Google transit

The New Internet



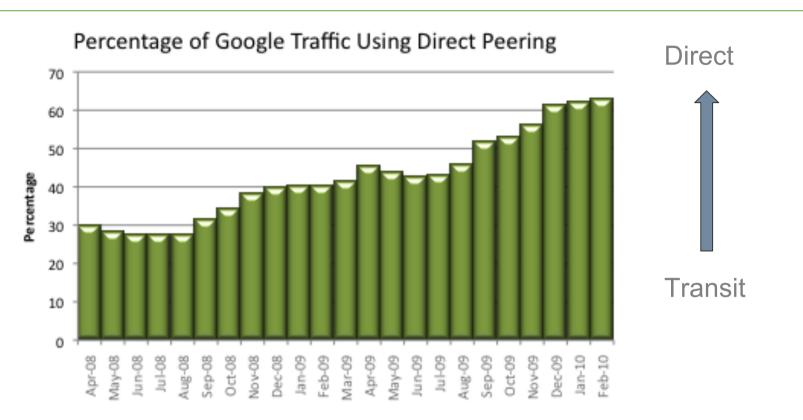
- Flatter and much more densely interconnected Internet
 - Significant routing, traffic, security, economic, implications
- Disintermediation between content and eyeball networks
- New commercial models between content, consumer and transit

Consolidation of Content (Grouped Origin ASN)



- In 2007, thousands of ASNs contributed 50% of content
- In 2009, 150 ASNs contribute 50% of all Internet traffic
- Approximates a power law distribution

Case Study: Google



- Over time Google absorbs YouTube traffic
- As of July 2009, Google accounts for 6% of all Internet inter-domain traffic
- Google the fastest growing ASN group

Google Dense Interconnection

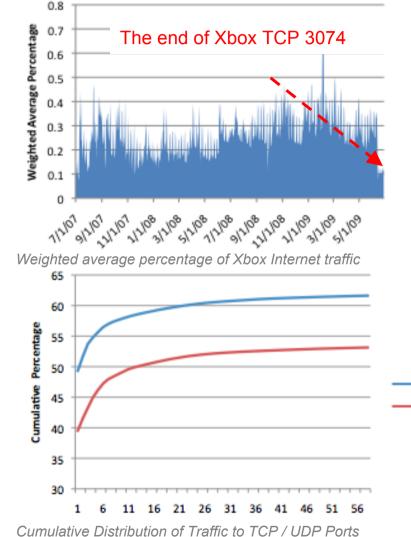
- Over time, Google increasingly using direct peering with tier 2/3 and eyeball networks
- As of February 2010, more than 60% of Google traffic does not use transit
 - Remainder largely global transit carriers
- These numbers do not include GGC

Applications

- Beyond traffic levels between ISPs
- Massive changes in the way Internet is used
 - Video
 - Web becomes new "IP"
 - And, the end of end-to-end
- This is important, because "end-to-end" is the fundamental design principal of the Internet
 - What makes the Internet different from telephony
 - What made the Internet great
 - And what is now quickly disappearing...

Global Application Trends

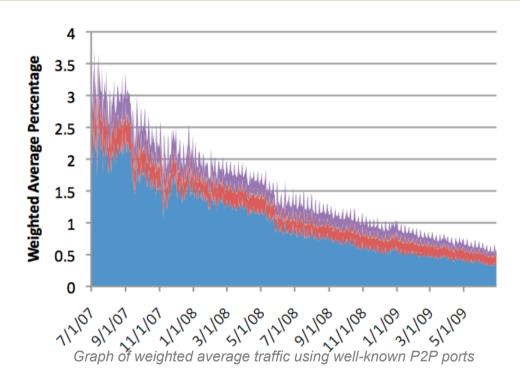
Rank	Application	2007	2009	Change
1	Web	41.68%	52.00%	24.76%
2	Video	1.58%	2.64%	67.09%
3	VPN	1.04%	1.41%	35.58%
4	Email	1.41%	1.38%	-2.13%
5	News	1.75%	0.97%	-44.57%
6	P2P (*)	2.96%	0.85%	-71.28%
7	Games	0.38%	0.49%	28.95%
8	SSH	0.19%	0.28%	47.37%
9	DNS	0.20%	0.17%	-15.00%
10	FTP	0.21%	0.14%	-33.33%
	Other	2.56%	2.67%	4.30%
	Unclassified	46.03%	37.00%	-19.62%


(*) 2009 P2P Value based on 18% Payload Inspection Weighted average percentage of all Internet traffic using well-known ports

- Growing volume of Internet traffic uses port 80 / 443
 - Includes significant video component and source of most growth
- Unclassified includes P2P and video
 - Payload matching suggests P2P at 18%
 - P2P is fastest declining

The End of End-to-End?

- Growing dominance of web
 as application front-end
- Plus burden of ubiquitous network layer security policies
- Results in growing concentration of application traffic over a decreasing number of TCP / UDP ports
 - Especially port 80
 - Especially video



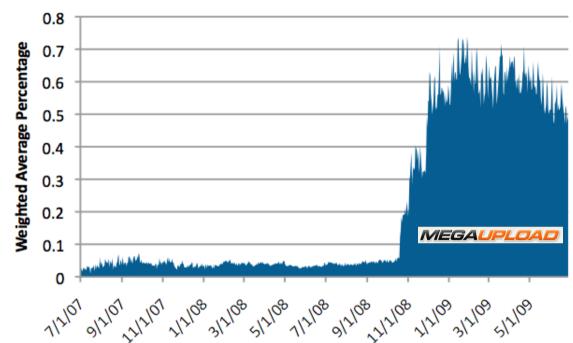
2009

2007

P2P Trends

In 2006, P2P one of largest threats facing carriers

- Significant protocol, engineering and regulatory effort / debate


In 2010, P2P fastest declining application group

- Trend in both well-known ports and payload based analysis
- Still significant volumes
- Slight differences in rate of decline by region (i.e. Asia is slower)

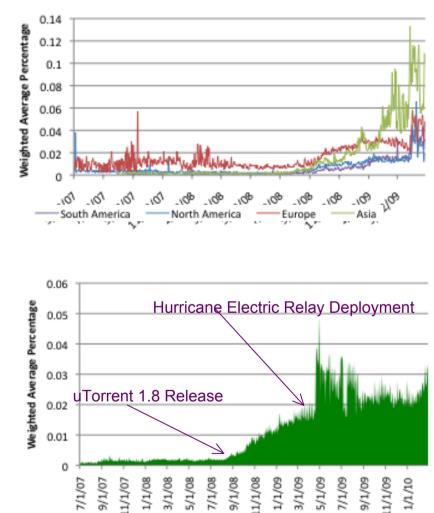
P2P Surpassed by Direct Download

Weighted average percentage of Internet traffic contributed by Carpathia ASNs

- Normally study lacks visibility into hosting customers
- Mega [Upload|Video|Erotic] is an exception
 - Carpathia small hosting company by traffic volume in Fall 2008
 - Mega becomes Carpathia customer in November 2008
 - Carpathia Hosting grows overnight to more than 0.5% of all traffic

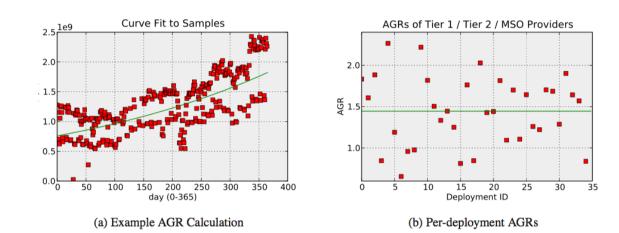


Applications Trends in Region


Class of applications	Change over 6 months
WEB (dl)	-3,56%
VIDEO (dl)	+5,19%
EMAIL (total)	-22,72%
NEWS (dl)	-5,12%
P2P (total)	+0,98%
GAMES (dl)	+21%

- Percentage describes change over % of total traffic in a period of 6 months
- Trend is different why?
 - Shorter time period?
 - More Local content?
 - Web content caching?
 - Decrease in SPAM?
 - Slower adoption of content download from the Web?
 - DPI traffic control?

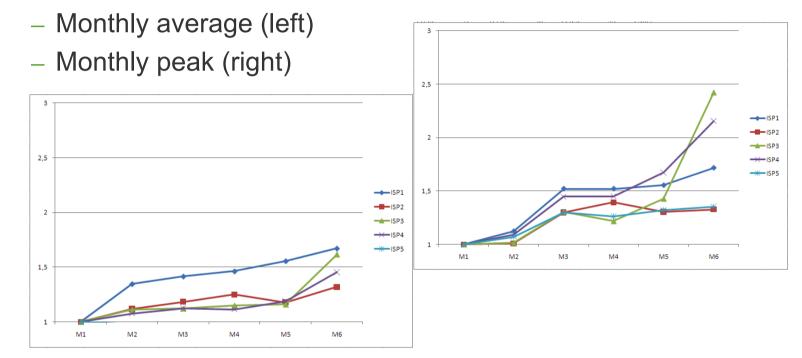
Global IPv6 Trends



- IPv6 miniscule percentage of Internet traffic (.04 %)
- Still relatively little native IPv6 peering between large carriers
- Few carriers with v6 traffic visibility (i.e. flow)
- Tunneled IPv6 shows growth since IPv6
 - Due to uTorrent
 - And Hurricane Electric global Teredo deployment (see blog)

Internet Size / Growth

Estimate	Observatory	ISP Survey	Cisco	MINTS
Traffic Volume Per Month	9 exabytes	N/A	9 exabytes	5-8 exabytes
Traffic Annual Growth Rate	44.5%	35-45%	50%	50-60%


- In 2009, Internet (inter-domain) roughly ~45 Tbs
 - And growing at 45% per year
- Significant, but no "Exaflood"
 - Followed MINTS methodology for AGR
 - Used 10 known ISP totals (MRTG / Flow based) to extrapolate Internet total

Regional Internet Growth

• Data from 5 ISPs in the region, over 6 months:

- Shows growth is much faster in region (6 months):
 - Average growth : 41%
 - Peak Growth : 80%
- Not long enough sample period

Discussion

- Significant changes in Internet traffic
- A shift from connectivity to content
 - Aggregation of content / traffic sources
 - Shift from transit to direct interconnection
 - Most significant growth in ~150 large content ASN
- And concurrent shift in applications to port 80
 - i.e. the web may represent the new end-to-end
- Implications on engineering and research
 - ACL / port based security model
 - Fault tolerance
 - Routing, traffic engineering, network design
 - Rapid growth of non-interactive traffic demands (i.e. DC)

