

Insights on IPv6 Security

Bilal Al Sabbagh, MSc, CISSP, CISA, CCSP

Senior Information & Network Security Consultant – NXme FZ-LLC

Information Security Researcher, PhD Candidate – Stockholm University

bilal@nxme.net

+966 50 440 3124

5/8/11 NXme FZ-LLC

1

NIXU Middle East / NXME

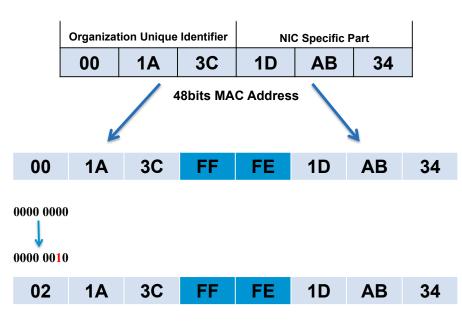
- New company name NXME
- Operations in Gulf region since 1998, in Finland since 1988
- Trusted and skilled company focusing on information security and network integration
- GEOGRAPHIC FOCUS: Middle East and Africa
- TECHNOLOGY AREAS: Internet security, Financial IT security, Penetration testing and Forensics, Security Audit, IP network design, operation and integration
- INDUSTRY SPECIALISATION: Banking and finance, telecommunications, government, military

Talk Topics

- IPv6 Addressing Security
- IPv6 Access Controls
- IPv6 Border Filters
- IPv6 Neighbour Discovery Protocol Security
- IPv6 And IPv4 Common Security Practices
- IPv6 coexistence with IPv4 security considerations
- IPv6 additional considerations
- IPv6 deployment conclusion

IPv6 Addressing Security

- The BIG address space make it harder for network reconnaissance using ping sweeps and hosts scans
 - No security scanners are yet capable to scan the default IPv6 /64 subnets.
 - 2^64 space needs around 5 Billions years to probe every service (RFC 5157, 2008)


nmap -6 2001:db8:130:20::/64

```
Starting Nmap 5.51 ( http://nmap.org ) at 2011-05-08 09:36 AST
Invalid host expression: 2001:db8:130:20::/64 -- slash not allowed.
IPv6 addresses can currently only be specified individually
QUITTING!
```


IPv6 Addressing Security

- Implementing stateless EUI-64 addresses make it easier for attackers to scan your IPV6 network
 - The already stuffed 16 bits "FFFE"
 - and if they know/guess the vendor of the IEEE 802
 network card 24 bits
 - The space will drop to 2^24 which will need 194 days

EUI-64 Interface Identifier

- Issues with EUI-64 Addresses
 - Privacy issues because the address is derived from host MAC addresses
 - Trackable hosts

me

- Hosts hardware brand might be exposed
- make it easier for attackers to scan your IPV6 network if they know/guess the vendor of the IEEE 802 network card
- Compromise Layer2 based access controls ?
- Privacy enhanced EUI-64 (RFC 4941, 2007) addresses use temporarily random addresses identifiers for outgoing connections

- Problems with using privacy extended EUI-64
 - Complicated troubleshooting

me

- Required frequent DNS records update
- Still an issue for host require unique IPv6 address
- Recommended Addressing Practices
 - Use static IPv6 Addresses for critical and public services.
 - Deploy statefull DHCPv6 when dynamic addressing is desired
 - Avoid using obvious and easy distinguished and memorable addresses

```
2001:db8:130:1234::cafe
```

Cryptographically Generated Addresses – CGA (RFC 3972, 2005)

- Cryptographically Generated Addresses CGA
 - Interface identifiers are generated using one-way hashing function based on users public keys and auxiliary parameters
 - Prevent addresses spoofing and stealing
 - Limitations since addresses are not certified
 - Main application is secure neighbor discovery protocol (SEND)

Mme

IPv6 Access Control

- IPv6 Capable firewalls that support
 - IPv6 access lists
 - IPv6 routes
 - ICMPv6 including neighbor discovery protocol
 - Plan carefully what ICMPv6 messages type to allow
 - Aggressive filtering of ICMPv6 could have negative impact on the network
 - You need to give special attention to the following ICMPv6 messages
 - Type 133/134 Router solicitation and advertisement
 - Type 135/136 Neighbor solicitation and neighbor advertisement

IPv6 Access Control

- Fragmentations controls
 - Mitigate DOS Attacks
 - Configure your firewall not to allow IPv6 packets with MTU less than 1280 Octets (RFC 2460, 1998)
 - Mitigations being tested
 - ACL with fragments keyword to permit or deny non initial fragments
 - Virtual Fragment Reassembly (VRF) for reassembling and examining fragments before passing to destination
- Spoofing Controls
 - Block spoofed packets according to (RFC 2827, 2000)
 - Block special use and non expected addresses (RFC 5156, 2008)

IPv6 Access Controls

- Broadcast Amplification Controls
 - IPv6 is designed to mitigate against such attacks
 - IPv6 nodes should not react to Broadcast or multicast addresses (RFC 4443, 2006)
 - But exceptions exist for "packet too big" and "parameter problem" icmpv6 messages destined to multicast groups
 - Mitigation is applied through rate-limiting these icmp messages.

IPv6 Border Filters

- Filter packets whose source/destination address should not be routable and does not exist in the internet routing table
 - Martians Prefixes
 - Prefixes should not exist in the public IPv6 routing table
 - Look at (RFC 5156, 2008) for special use IPv6 addresses
 - Bogons Prefixes
 - Prefixes Not yet allocated by IANA to RIR
 - Look at this dynamic live list http://www.bgpmon.net/ showbogons.php?inet=6&global
 - Selective prefixes
 - According to your own policies e.g. your IPv6 prefix
 - Ingress / egress filtering

Bogons Prefixes

update type	seen by #peers_	Date (UTC)	Bogon network	announced_prefix *	Origin AS	transit AS_	ASpath
Update (Bogon Prefix)	14	2011-03-29	f800:0000::/6	f800:2c00::/24	AS1273 0	AS6762 0	35579 8928 3257 6762 1273
Update (Bogon Prefix)	14	2011-03-29	f800:0000::/6	f800:2b00::/24	AS1273 0	AS6762 0	35579 8928 3257 6762 1273
Update (Bogon Prefix)	14	2011-03-29	a000:0000::/3	b800::/8	AS6774 0	AS1273 0	42708 21155 8455 3257 6762 1273 6774
Update (Bogon Prefix)	14	2011-03-29	8000:0000::/3	90a8::/24	AS47595 🜒	AS48287 0	8928 3257 6762 1273 15835 15835 48287 47595
Update (Bogon Prefix)	14	2011-03-29	6000:0000::/3	7c20:c00::/24	AS51408 O	AS15835 O	6850 3267 2603 3257 6762 1273 15835 15835 51408 51408
Update (Bogon Prefix)	14	2011-03-29	6000:0000::/3	7c01:5c00::/24	AS34387 0	AS6667 0	12637 3257 6762 1273 6667 34387
Update (Bogon Prefix)	14	2011-03-29	6000:0000::/3	7800::/8	AS5432 0	AS6774 0	42456 3257 6762 1273 6774 5432
Update (Bogon Prefix)	14	2011-03-29	4000:0000::/3	6000::/8	AS34171 0	AS13058 0	8607 3344 9153 3257 6762 1273 5539 13058 34171
Update (Bogon Prefix)	14	2011-03-29	4000:0000::/3	5000::/8	AS2609 0	AS5539 0	12637 3257 6762 1273 5539 2609
Update (Bogon Prefix)	14	2011-03-29	4000:0000::/3	4800::/8	AS1342 💿	AS6667 0	6850 3267 2603 3257 6762 1273 6667 1342
Update (Bogon Prefix)	60	2011-04-19	2a00:0000::/12	2a03:d700::/32	AS35475 0	AS6939 •	32491 2914 6939 35475 35475 35475
Update (Bogon Prefix)	54	2011-04-12	2a00:0000::/12	2a03:9f00::/32	AS8676 0	AS6939 0	8928 2914 6939 8676
Update (Bogon Prefix)	6	2011-04-13	2a00:0000::/12	2a03:9f00::/32	AS8676 0	AS6939 0	39912 6939 8676
Update (Bogon Prefix)	56	2011-04-11	2a00:0000::/12	2a03:9700::/32	AS12859 0	AS6939 0	2497 6939 12859
Update (Bogon Prefix)	8	2011-04-12	2a00:0000::/12	2a03:9700::/32	AS12859 0	AS3257 0	378 20965 1299 3257 12859
Update (Bogon Prefix)	75	2011-03-25	2a00:0000::/12	2a03:900::/32	AS20574 0	AS15782 0	12859 16150 15782 20574
Update (Bogon	54	2011-04-08	2a00:0000::/12	2a03:8500::/32	AS44291 0	AS21219 0	6453 6939 21219 44291

Snapshot of Bogonn prefixes seen on the Internet in May 6th, 2011 http://www.bgpmon.net/showbogons.php?inet=6&global

IPv6 Neighbor Discovery Protocol

- IPv4 ARP replacement
- IPv6 auto configuration
- Neighbor Solicitation
- Router Solicitation
- Neighbor Advertisement
- Router Advertisement
- Duplicate address detection
- Redirections

Securing IPv6 Neighbor discovery protocol

- Neighbor discovery protocol Threats (RFC 3756, 2004)
 - Fake router advertisement
 - False neighbor advertisement messages
 - DOS against duplicate address detection
- Countermeasure

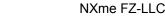
Me

- Access controls
- Deploy Secure neighbor discovery SEND (RFC 3971, 2005)
 - Proofing address ownership
 - Protecting message integrity
 - Authorizing router advertisement messages
- Configure Static neighbor entries for critical systems

Common Security issues in IPv4 and IPv6

- Packet Capturing
 - Implement IPSEC
- Routing Protocols
 - Implement MD5 keyed digest for BGP, IS-IS and EIGRP
 - Implement IPSEC to secure OSPF and RIP in IPv6
- Hijacking

Me


- Implement IPSEC
- Denial of service
 - Limited protection similar to IPv4. IPSEC can also help
- Malware and Worms
 - Deploy Antivirus, Patching, IDSes and access control

Security Considerations when running IPv6 with IPv4

- Dual Stack implementations requires different access policies for IPv6 networks
 - Surface of attack is doubled
 - Configure separate IPv6 access policies along existing IPv4 ones
- IPv6 tunnels usually bypass IPv4 policies
 - Originate/terminate tunnels on the perimeter where you can configure the required policies
 - Restrict dynamic tunnels by restricting unauthorized outgoing tunnels
 - Security considerations for 6to4 tunnels (RFC 3964, 2004)
 - 6to4 routers have to accept and decapsulate IPv4 packets from other 6to4 routers and relays
 - Spoofing
 - DOS

5/8/11

Me

Further recommendations

- Subnet your network with foresight Consider (RFC 3531, 2003)
 - Easier to manage your assignments
 - Make routing and aggregation efficient
- Plan addressing strategy
 - You will still need both IPv4 and IPv6
 - Decide on transition approach
 - Dual stack IPv6/IPv4
 - Tunneling: Tunnel Broker, 6to4, TEREDO, 6RD, etc..
 - Translation: Address family translation AFT
- Your link subnet is better to be /64 ?

Further Recommendations

- Why /64 prefix length Not to break at least the following:
 - Neighbor discover including SEND (RFC 3971, 2005)
 - Privacy extensions (RFC 4941, 2007)
 - Other technologies e.g. Mobile IPv6 route optimization (RFC 4866, 2007)

Conclusion

- Develop and define your requirements
- Develop a transition plan
- Develop security policies and control mechanisms
- Develop awareness
- Decide on a transition approach
- Monitor and enhance

Questions?

References

- http://www.faqs.org/rfcs/rfc3964.html
- http://tools.ietf.org/html/rfc4941
- http://www.faqs.org/rfcs/rfc3971.html
- http://www.ietf.org/rfc/rfc3972.txt
- http://www.ietf.org/rfc/rfc3756.txt
- http://tools.ietf.org/html/rfc5156
- http://www.ietf.org/rfc/rfc5157.txt
- http://www.faqs.org/rfcs/rfc2827.html
- http://www.faqs.org/rfcs/rfc4443.html

References

- <u>http://documents.iss.net/whitepapers/IPv6.pdf</u>
- <u>http://www.bgpmon.net/showbogons.php?</u> <u>inet=6&global</u>
- <u>http://www.6net.org/events/workshop-2003/</u> <u>marin.pdf</u>
- <u>http://www.6net.org/events/workshop-2003/</u> <u>marin.pdf</u>
- <u>http://www.infosecwriters.com/text_resources/pdf/</u>
 <u>IPv6_SSotillo.pdf</u>
- <u>http://6session.wordpress.com/2009/04/08/ipv6-</u> martian-and-bogon-filters/

References

- http://www.ipv6.com
- http://seanconvery.com/v6-v4-threats.pdf