

Philip Smith

MENOG 5, Beirut, 29th October 2009

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number

Autonomous System Number

An ASN is a 16-bit integer

- 1-64511 are assigned by the Regional Internet Registries
- 64512-65534 are private ASNs and should never be used on the Internet
- 0 and 65535 are reserved
- Current allocations up to 56319 have been made to the RIRs

ASN status

- The pool of 16-bit ASNs will soon be exhausted
 - Analysis at http://www.potaroo.net/tools/asns/
 - Current estimates are that the 16-bit ASN pool will be exhausted in 2011
- Work started in 2001 to extend the ASN pool to 32-bits

Source: http://www.potaroo.net/tools/asns/fig28.png

32-bit ASNs

- Standards documents
 - Description of 32-bit ASNs
 - www.rfc-editor.org/rfc/rfc4893.txt
 - Textual representation
 - www.rfc-editor.org/rfc/rfc5396.txt
 - New extended community
 - www.ietf.org/internet-drafts/draft-ietf-idr-as4octetextcomm-generic-subtype-00.txt
- AS 23456 is reserved as interface between 16-bit and 32-bit ASN world

Getting a 32-bit ASN

- Sample RIR policy
 - www.apnic.net/docs/policy/asn-policy.html
- From 1st January 2007
 - 32-bit ASNs available on request
- From 1st January 2009
 - 32-bit ASNs assigned by default
 - 16-bit ASNs only available on request
- From 1st January 2010
 - No distinction ASNs assigned from 32-bit pool

Representation

- 32-bit ASNs extend the pool:
 - 0-65535 extended to 0-4294967295
- Representation of 65536-4294967295 range
 - Most operators favour traditional format (asplain)
 - A few prefer dot notation (X.Y):
 - asdot for 65536-4294967295, e.g 2.4
 - asdot+ for 0-4294967295, e.g 0.64513
 - But regular expressions will have to be completely rewritten for asdot and asdot+ !!!

asplain vs asdot(+)

- Problem:
 - ^[0-9]+\$ matches any ASN (16-bit and asplain)
 - This and equivalents extensively used in BGP multihoming configurations for traffic engineering
- Equivalent regexp for asdot is
 - ^([0-9]+)|([0-9]+\.[0-9]+)\$
- Equivalent regexp for asdot+ is
 - ^[0-9]+\.[0-9]+\$
- ⇒ BGP policy regular expressions will need to be rewritten

IANA Assignments

- Using dot notation for readability
- 0.0 0.65535
 16-bit ASN block
- 2.0 2.1023 APNIC
- **3.0 3.1023** RIPE NCC
- 4.0 4.1023 LACNIC
- 5.0 5.1023 AfriNIC
- 6.0 6.1023 ARIN
- Remainder are reserved or held by IANA

IANA Assignments (Special)

- 0 & 65535
- 23456
- 64512 65534
- 64496 64511
- 65536 65551

Reserved

32-bit ASN transition

Private ASNs

Documentation (16-bit)

Documentation (32-bit)

Changes (1)

- 32-bit ASNs are backwardly compatible with 16-bit ASNs
- There is no flag day
- You do NOT need to:
 - Throw out your old routers
 - Replace your 16-bit ASN with a 32-bit ASN

Changes (2)

You do need to be aware that:

- Your customers will come with 32-bit ASNs
- ASN 23456 is not a bogon!
- You will need a router supporting 32-bit ASNs to use a 32-bit ASN
- If you have a proper BGP implementation, 32-bit ASNs will be transported silently across your network

How does it work (1)?

- Local router only supports 16-bit ASN
- Remote router uses 32-bit ASN
- BGP peering initiated:
 - Remote asks local if 32-bit supported (BGP capability negotiation)
 - When local says "no", remote then presents AS23456
 - Local needs to be configured to peer with remote using AS23456

How does it work (2)?

- BGP peering initiated (cont):
 - BGP session established using AS23456
 - 32-bit ASN included in a new BGP attribute called AS4_PATH
 - (as opposed to AS_PATH for 16-bit ASNs)
- Result:
 - 16-bit ASN world sees 16-bit ASNs and 23456 standing in for 32-bit ASNs
 - 32-bit ASN world sees 16 and 32-bit ASNs

Example:

- Internet with 32-bit and 16bit ASNs
- AS-PATH length maintained

Configuration Example (1)

- AS70000 and AS80000 border routers:
 - Configuration on AS80000:
 - router bgp 80000
 - neighbor 1.1.1.6 remote-as 70000
 - Configuration on AS70000:
 - router bgp 70000
 - neighbor 1.1.1.5 remote-as 80000
 - Both routers have to support 32-bit ASNs

Configuration Example (2)

- AS123 and AS70000 border routers:
 - Configuration on AS123:
 - router bgp 123
 - neighbor 1.1.1.2 remote-as 23456
 - Configuration on AS70000:
 - router bgp 70000
 - neighbor 1.1.1.1 remote-as 123
 - AS70000 router supports 32-bit ASNs
 - AS123 router does not support 32-bit ASNs

What has changed?

- Two new BGP attributes:
 - AS4_PATH
 - Carries 32-bit ASN path info
 - AS4_AGGREGATOR
 - Carries 32-bit ASN aggregator info
 - Well-behaved BGP implementations will simply pass these along if they don't understand them
- AS23456 (AS_TRANS)

What do they look like?

IPv4 prefix originated by AS196613

as4-7200#sh ip bgp 145.125.0.0/20

asplain format

BGP routing table entry for 145.125.0.0/20, version 58734 Paths: (1 available, best #1, table default) 131072 12654 196613 204.69.200.25 from 204.69.200.25 (204.69.200.25)

Origin IGP, localpref 100, valid, internal, best

	IPv4 prefix originated by AS3.5
	as4-7200#sh ip bgp 145.125.0.0/20
	BGP routing table entry for 145.125.0.0/20, version 58734
asdot	Paths: (1 available, best #1, table default)
ormat	2.0 12654 3.5
	204.69.200.25 from 204.69.200.25 (204.69.200.25)
	Origin IGP, localpref 100, valid, internal, best

What do they look like?

IPv4 prefix originated by AS196613 But 16-bit AS world view:

```
BGP-viewl>sh ip bgp 145.125.0.0/20

BGP routing table entry for 145.125.0.0/20, version 113382

Paths: (1 available, best #1, table Default-IP-Routing-

Table)

23456 12654 23456

204.69.200.25 from 204.69.200.25 (204.69.200.25)

Origin IGP, localpref 100, valid, external, best

Transition

AS
```

What do they look like?

IPv6 prefix originated by AS 2.9

```
RP/0/0/CPU0:as4byte#show bgp ipv6 unicast 2403:2000::/32
BGP routing table entry for 2403:2000::/32
Versions:
                    bRIB/RIB
                              SendTblVer
  Process
  Speaker
                          93
                                       93
Paths: (1 available, best #1)
                                                32-bit
  Not advertised to any peer
                                                 ASN
  Path #1: Received by speaker 0
  109 6175 2497 2500 18146 2.9
    2001:420:0:8001::1 from 2001:420:0:8001::1 (204.69.200.22)
      Origin IGP, localpref 100, valid, external, best
```

32-bit ASN not supported:

- Inability to distinguish between peer ASes using 32-bit ASNs
 - They will all be represented by AS23456
 - Could be problematic for transit provider's policy
- Inability to distinguish prefix's origin AS
 - How to tell whether origin is real or fake?
 - The real and fake both represented by AS23456
 - (There should be a better solution here!)

32-bit ASN not supported:

Incorrect NetFlow summaries:

- Prefixes from 32-bit ASNs will all be summarised under AS23456
- Traffic statistics need to be measured per prefix and aggregated
- Makes it hard to determine peerability of a neighbouring network

Implementations (Sept 09)

- Cisco IOS-XR 3.4 onwards
- Cisco IOS-XE 2.3 onwards
- Cisco IOS 12.0(32)S12 & 12.4(24)T
- Cisco NX-OS 4.0(1)
- Quagga (patches for 0.99.6)
- OpenBGPd (patches for 3.9 & 4.0)
- Juniper JunOSe 4.1.0 & JunOS 9.1
- Redback SEOS
- Force10 FTOS7.7.1 onwards

http://as4.cluepon.net/index.php/Software_Support

What next?

- Pester your router vendors for 32-bit ASN support
 - Do you really want to run beta software in your core network?
 - Depletion of the 16-bit pool is not far away
 - Stable software, deployment cycles &c
 - Insist your vendors support "asplain"
 - Otherwise prepare to rewrite all your regular expressions!!

Conclusion

- The Internet will not break
- Your network will not break
- If you have an ASN today:
 - You don't need to change anything
 - 32-bit ASNs appear as AS 23456
- If you have no ASN today:
 - Your routers will need 32-bit ASN support unless you specifically ask your RIR for a 16-bit ASN