

Introduction to Software Defined Networking

Ahmed Maged

MENOG 15 – Dubai – April 2015

amaged@xegypt.org

Agenda

- What is SDN and What it is not
- SDN Trends
- Getting Ready for SDN

What is SDN

- Simply, it is a new 'approach' to networking.
- Which means, it is not just one specific solution, technology or product. It is a range of advances in networking.
- It is a Buzz word that is used for Marketing purposes, to present new products.
- But there are interesting concepts that are emerging.

What SDN is not...

- It is not 'only' decoupling of Forwarding Plane and Control Plane.
- It is not 'only' networking on white-boxes / generic hardware.
- It is not 'only' programmability support on embedded network devices to program the network.

What is SDN again

- It is a journey of transforming the networking industry, challenging the way we build and manage networks today.
- It is allowing us to easily control the network, in the same way we control applications and operating systems.
- Bringing more flexibility to existing and future networking to influence design and operations from external applications.
- Providing new ways of interaction with network devices.

The Need for SDN

IT : Hi SDN...can you solve my network problems.

SDN : what kind of problems ?

Custom Traffic Engineering

More examples:

- Steering traffic and priority based on Weather/Environment changes.
- If a host becomes infected, re-direct their traffic to a portal that will clean their traffic and send them a warning note to their browser.
- i.e : Allowing granular automatic network changes and routing based directly on Business Metrics and driven from IT Applications.

Why cant I just tell you what I want to do, and you translate it to your language

Error, Command Not Found

Existing technology is limiting us?

- Because the boxes speak protocols/algorithms that are not familiar to other IT personnel and only network people can comprehend...i.e : BGP, OSPF, MPLS...etc
- Because interacting with the network required a language, that a few people in the organization understands...i.e: Vendor specific CLI
- In summary, that always limited what networks can do.

How do I tell you what to do exactly

Learn my CLI + BGP, MPLS, OSPF ©

Existing provisioning process

• Slow, Time consuming, Human-dependent

SDN Addresses needs for

- Centralized configuration, management/control, monitoring of network devices (physical or virtual).
- Ability to override traditional forwarding algorithms to suite unique business or technical needs.
- Allowing external applications or systems to influence network provisioning and operation.
- Rapid and scalable deployment of network services with lifecycle management.

Agenda

- What is SDN and What it is not
- SDN Trends
- Getting Ready for SDN

Evolution

We no longer work in Silos

Evolve from what started as DevOps to NetOps

- Programming technologies married Operations
 - Java, C, Python, REST, Chef, Puppet, OpenStack, Controllers, NetConf/Yang, OpenFlow ...
- That fosters innovation and automation
 - Automated provisioning, dynamic traffic engineering, integrated with routers and switches and continuous integration
- Combining network operations and development
 - IT and network operations, business application and infrastructure developers

Integrate: Simplify & Automate & Move Fast

Network Function Virtualization Enablers, benefits and applications

Technology enabler

- Hypervisor and cloud computing technology
- Improving x86 h/w performance
- Optimised packet processing and coding techniques
- Network industry standardising on Ethernet
- SDN based orchestration
- Return on Investment
 - Reduction in CAPEX and OPEX
 - Shorter innovation cycle
 - Improved service agility

All Functions in common x86 Archite							
Media Server	Router	Switch	Firewall	WEB Server	Balancer		
os	os	OS	os	os	os		
Virtual Machine	Virtual Machine	Virtual Machine	Virtual Machine	Virtual Machine	Virtual Machine		
Hypervisor							
Metal (x86)							

Evolving The Network Software Stack

Customer Needs: Network Programmability

Research/	Massively Scalable	Scale	Service	Enterprise
Academia	Data Center	Cloud	Providers	
 Experimental OpenFlow/SDN components for production networks 	 Customize with Programmatic APIs to provide deep insight into network traffic 	 Automated provisioning and programmable overlay, OpenStack 	 Policy-based control and analytics to optimize and monetize service delivery 	 Virtual workloads, VDI, Orchestration of security profiles
Network	Network Flow	Scalable	Agile Service Delivery	Private Cloud
"Slicing"	Management	Multi-Tenancy		Automation

SDN Trends and Programmatic Interfaces

Example : Open Source Controller Open DayLight Controller

Elementary Infrastructure Functions (Controller-base layer)

Platform APIs and Agents

Physical and Virtual Infrastructure (Overlays and Network Function Virtualization)

What Is OpenDaylight?

- ...an open source project formed by industry leaders and others under the <u>Linux</u> <u>Foundation</u> with the mutual goal of furthering the adoption and innovation of Software Defined Networking (SDN) through the creation of a common vendor supported framework.
- Focus: Customers with some programming resources that desire a free, community-supported SDN controller, especially if focus is on OpenFlow

Model Driven Controller Architecture Controller naturally exposes all APIs: Devices and Network APIs

Northbound API = SUM (Device APIs) + Controller-Services APIs API APIs - Device. API API API ΔΡΙ API Network Network, Services ••• Topology Routing **Device-ACL Device-QoS** Inventory Policv User Automatically generated APIs based on models Network Network Device, Network Device-ACL Device-OoS Topology Inventory Policy Routing Service Models Model Model Model Model Model Model Controller Device models loaded into Controller Device Device Device Device-QoS Routing Device-ACL Inventory Topology Models Model Model Model Device Model Model

Application Policy Plugin Architecture

Basic Use-Case of OpenDayLight

Business Logic OpenDayLight Controller Step 1 : Query network topology details from the controller using its northbound interface North bound interface **BGP-LS** Connection **PCEP** Connection Step 2 : Create, update and delete paths in the network using the controller southbound interface South bound interface

Agenda

- What is SDN and What it is not
- SDN Trends
- Getting Ready for SDN

Get Familiar with the Industry Standards + Initiatives

Early Adopters and Operational Networks

• AT&T

http://www.packetdesign.com/blog/att-slow-crawl-to-sdn-ubiquity

• Microsoft :

http://www.zdnet.com/article/why-microsoft-is-invested-in-opendaylight/

Telefonica : newsroom.cisco.com/press-release-content;jsessionid=10100EEF9E1CB4FAFCFD6962E824E8E1? type=webcontent&articleId=1488116

• Google :

http://www.networkcomputing.com/networking/inside-googles-software-defined-network/a/d-id/1234201?

• Amazon:

http://www.infoworld.com/article/2608106/sdn/sdn-secrets-of-amazon-and-google.html

• Facebook :

https://gigaom.com/2014/11/14/facebook-shows-the-promise-of-sdn-with-new-networking-tech/

Play with the Tools (Controller...etc)

- Find out what are your top challenges that can be solved with SDN.
- Download the tools, build a lab, get trained, test and break things.
- Read tweets and blogs, attend conferences.
- Find out what others are doing.
- Take baby steps, try to automate some things, rinse and repeat.

Get Familiar with new skills

- Every once in a while, engineers need to sharpen some skills.
- This is the time to start the path to a network engineer with software programming and networking hybrid skills.
- Remember the transition from Analog circuit switched networks to IP Telephone ;)

Get on the bandwagon

- Linux, Sed, Awk
- Automation, Puppet/Chef
- Python, Go Lang, RegEx, Web Services
- Parsing, Pattern matching, JSON, XML
- REST, NetConf/YANG
- Cooperate with the

Open source community

Thank you

• Q&A