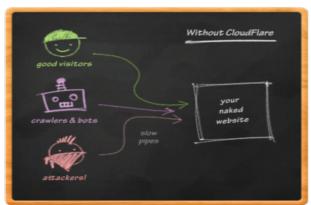
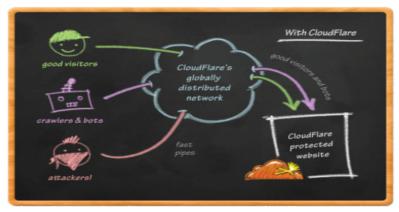


Routing for an Anycast CDN


Martin J Levy @ CloudFlare

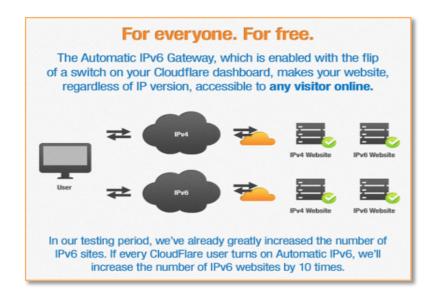

MENOG14 - Dubai - March 2014

What is CloudFlare?

 CloudFlare makes websites faster and safer using our globally distributed network to deliver essential services to any website

- Performance
- Content Optimization
- Security
- Analytics
- Third party services

How does CloudFlare Work?


- CloudFlare works at the network level.
 - Once a website is part of the CloudFlare community, its web traffic is routed through CloudFlare's global network of 24 (and growing) data centers.
 - At each edge node, CloudFlare manages DNS, caching, bot filtering, web content optimization and third party app installations.

IPv4/IPv6 – automatically enabled

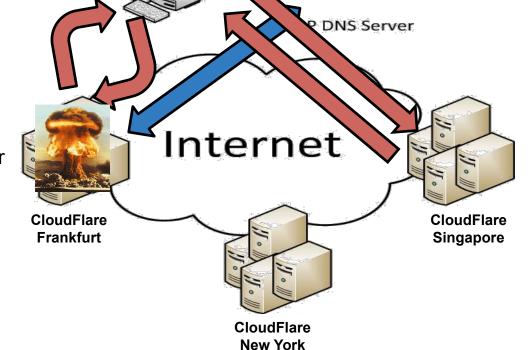
- With the Internet's explosive growth and the number of on-net devices closing in on IPv4's maximum capacity, CloudFlare now offers an automatic IPv6 gateway seamlessly bridging the IPv4 and IPv6 networks
 - For most businesses, upgrading to the IPv6 protocol is costly and time consuming
 - CloudFlare's solution requires NO hardware, software, or other infrastructure changes by the site owner or hosting provider
 - Enabled via the flip of a switch on the site owner's CloudFlare dashboard
 - Users can choose two options: (FULL) which will enable IPv6 on all subdomains that are CloudFlare Enabled, or (SAFE) which will automatically create specific IPv6-only subdomains (e.g. www.ipv6.yoursite.com)

Anycast prefixes

- Same IP prefixes (IPv4 & IPv6) advertised in each of the 24 sites around the world (and growing)
- Unicast used to pull traffic from "origin" web source

Traffic Control

- How the eyeball ISP routes
- If ISP A routes to CloudFlare in Germany then traffic will be served for ISP A from Frankfurt
- If ISP B routes to CloudFlare in Central USA then traffic will be served for ISP B from Dallas or Chicago


Traceroute from Hong Kong

- Traceroute from Singapore
- Traceroute from Dubai

tra	ceroute to 173.245.61.248 (173.245.61.248), 30 hop	s max, 40 by		
1	202-150-221-169.rev.ne.com.sg (202.150.221.169)	0.351 ms	0.406 ms	0.456 ms
2	s4-6-r10.cyberway.com.sg (203.117.6.209)	0.610 ms	0.652 ms	0.692 ms
3	anutsi10.starhub.net.sg (203.118.3.162)	2.579 ms	2.575 ms	2.562 ms
4	six2utsi1.starhub.net.sg (203.118.3.189)	1.452 ms	1.633 ms	1.768 ms
5	SH.gw5.sin1.asianetcom.net (203.192.169.41)	1.561 ms	1.620 ms	1.610 ms
6	te0-0-2-0.wr1.sin0.asianetcom.net (61.14.157.109)	2.135 ms	1.921 ms	1.950 ms
7	gi4-0-0.gw2.sin3.asianetcom.net (61.14.157.134)	1.909 ms	1.907 ms	1.882 ms
8	CDF-0003.gw2.sin3.asianetcom.net (203.192.154.26)	1.417 ms	1.504 ms	1.493 ms
9	cf-173-245-61-248.cloudflare.com (173.245.61.248)	1.470 ms	1.461 ms	1.520 ms
Tra	ceroute Completed.			
tra	ceroute to 173.245.61.248 (173.245.61.248), 64 hop	s max, 44 by		
1	bbs-1-250-0-210.on-nets.com (210.0.250.1)	0.423 ms	0.329 ms	0.320 ms
2	10.2.193.17 (10.2.193.17)	0.719 ms	0.661 ms	0.682 ms
3	peer (218.189.96.62)	0.569 ms		0.545 ms
4	cloudflare-RGE.hkix.net (202.40.160.246)	1.893 ms	2.419 ms	1.910 ms
5	cf-173-245-61-248.cloudflare.com (173.245.61.248)	2.101 ms	1.973 ms	1.780 ms
Tra	ceroute Completed.			
tra	ceroute to 173.245.61.248 (173.245.61.248), 64 hop	, .		
1	10.50.0.1 (10.50.0.1)		56.679 ms	23.776 ms
2	94.200.91.194 (94.200.91.194)		35.165 ms	9.889 ms
3	10.171.0.49 (10.171.0.49)		28.953 ms	
4	10.128.144.29 (10.128.144.29)		6.069 ms	
5	10.44.19.177 (10.44.19.177)	9.389 ms		
6	10.44.247.89 (10.44.247.89)	6.074 ms		8.031 ms
7	94.201.0.65 (94.201.0.65)		14.462 ms	
8	10.44.24.58 (10.44.24.58)	194.345 ms	162.052 ms	199.916 ms
9	* * *			
10	cf-173-245-61-248.cloudflare.com (173.245.61.248)	152.790 ms	167.038 ms	143.949 ms
11	Traceroute Completed.			

- DNS Query
- DNS result returned with "Anycast" IP
- Client makes connection to closest server
- CloudFlare replies
- Outage Re-routes to next closest cluster

- Who?
 - Choice of Transit Provider is VERY important
 - We've chosen one provider per region One in US/EU and one in Asia (or the same provider for both regions)
 - Single Provider makes routing easier
 - Transit provider should offer good routing controls
 - You need to be able to keep routes within a region
 - Prepend to specific peers
 - Transit Provider should make use of "Hot Potato" routing to their peers
 - i.e. Peer and exchange traffic in every mutual location

- Routing Controls?
 - Transit must be able to keep advertisements within region.
 - A customer of your European transit provider is likely to be a peer of your Asian transit provider
 - You don't want to serve traffic from Asia for Europe
 - A lot of work should be done in the presales stage to understand the providers network and how they peer.
- Example location to look for controls
 - Looking at AS1299's (Telia-Sonera) whois entry gives a good idea how they peer
 - Some routing controls listed at http://www.onesc.net/communities/

- · Choices?
 - Many providers give you good coverage for common US/EU locations (LA, New York, London, Amsterdam, etc ...)
 - One provider can't do it all in Asia
 - Asian networks are usually somewhat 'disconnected'
 - Few peer with NTT in Asia & NTT, Pacnet and TATA are all disconnected from each other
 - Transit in the US/EU could be far cheaper for the provider than within Asia or Africa or Middle East
 - Supplement this with peering in all regions

Peering

Peering

- North America Peering
 - Is it economic to peer?
 - Transit is < \$1
 - Eyeball networks probably *wont* peer with you
 - Comcast (not at any exchange)
 - ATT
 - South America?
 - Peering in Miami
 - Most networks open to peering

- EU Peering
 - Same argument as US, might be more costly to peer
 - Many networks open to peering however
 - Major providers / incumbents more difficult, probably wont peer:
 - · DTAG, TeliaSonera
 - Telecom Italia Sparkle
 - · Telefonica, France Telecom
 - IX's have good reach to surrounding regions.
 - AMS-IX, DE-CIX, NETNOD, LINX

Asia Peering

- Very economical; however large providers may not peer
- HKIX and Hong Kong Equinix
 - No IX charges and HKIX will get you 100% of domestic Hong Kong.
 - Very good Vietnam and some Taiwan, Korea, Japan and China routes too
- Singapore Equinix
 - Priced competitively and great coverage for South East Asia (Indonesia, Thailand, Malaysia, India)
- Tokyo Japan
 - JPIX and JPNAP much more costly

Challenges

Challenges

- Challenges
 - Routing
 - Inefficient routing, optimizing.
 - Turning up peering, causing unexpected routing changes
 - Russian Network preferred our routes via HKIX instead of in Europe.
 - Keeping optimal routing to Eyeball Networks
- Deployments into new markets
 - · China, South America, Africa, Middle East

Questions?

martin@cloudflare.com AS13335

